Matches in SemOpenAlex for { <https://semopenalex.org/work/W2406009315> ?p ?o ?g. }
- W2406009315 endingPage "2294" @default.
- W2406009315 startingPage "2290" @default.
- W2406009315 abstract "This paper presents a voice source modelling method employing a deep neural network (DNN) to map from acoustic features to the time-domain glottal flow waveform. First, acoustic features and the glottal flow signal are estimated from each frame of the speech database. Pitch-synchronous glottal flow time-domain waveforms are extracted, interpolated to a constant duration, and stored in a codebook. Then, a DNN is trained to map from acoustic features to these durationnormalised glottal waveforms. At synthesis time, acoustic features are generated from a statistical parametric model, and from these, the trained DNN predicts the glottal flow waveform. Illustrations are provided to demonstrate that the proposed method successfully synthesises the glottal flow waveform and enables easy modification of the waveform by adjusting the input values to the DNN. In a subjective listening test, the proposed method was rated as equal to a high-quality method employing a stored glottal flow waveform." @default.
- W2406009315 created "2016-06-24" @default.
- W2406009315 creator A5000571465 @default.
- W2406009315 creator A5009348332 @default.
- W2406009315 creator A5009644866 @default.
- W2406009315 creator A5040474925 @default.
- W2406009315 creator A5042186400 @default.
- W2406009315 creator A5062516688 @default.
- W2406009315 creator A5075897911 @default.
- W2406009315 date "2014-11-13" @default.
- W2406009315 modified "2023-09-23" @default.
- W2406009315 title "Voice source modelling using deep neural networks for statistical parametric speech synthesis" @default.
- W2406009315 cites W1600722501 @default.
- W2406009315 cites W163616957 @default.
- W2406009315 cites W1756939916 @default.
- W2406009315 cites W1966264494 @default.
- W2406009315 cites W2021320575 @default.
- W2406009315 cites W2049083033 @default.
- W2406009315 cites W2049686551 @default.
- W2406009315 cites W2066999516 @default.
- W2406009315 cites W2074854222 @default.
- W2406009315 cites W2097634052 @default.
- W2406009315 cites W2100213313 @default.
- W2406009315 cites W2102003408 @default.
- W2406009315 cites W2103764823 @default.
- W2406009315 cites W2129142580 @default.
- W2406009315 cites W2147215240 @default.
- W2406009315 cites W2149572519 @default.
- W2406009315 cites W2150658333 @default.
- W2406009315 cites W2155498861 @default.
- W2406009315 cites W2158432602 @default.
- W2406009315 cites W2184045248 @default.
- W2406009315 cites W2228674556 @default.
- W2406009315 cites W2285182995 @default.
- W2406009315 cites W2286166914 @default.
- W2406009315 cites W2395578248 @default.
- W2406009315 cites W2400063444 @default.
- W2406009315 cites W6725010 @default.
- W2406009315 cites W86509243 @default.
- W2406009315 hasPublicationYear "2014" @default.
- W2406009315 type Work @default.
- W2406009315 sameAs 2406009315 @default.
- W2406009315 citedByCount "18" @default.
- W2406009315 countsByYear W24060093152014 @default.
- W2406009315 countsByYear W24060093152015 @default.
- W2406009315 countsByYear W24060093152016 @default.
- W2406009315 countsByYear W24060093152017 @default.
- W2406009315 countsByYear W24060093152018 @default.
- W2406009315 countsByYear W24060093152019 @default.
- W2406009315 countsByYear W24060093152021 @default.
- W2406009315 crossrefType "proceedings-article" @default.
- W2406009315 hasAuthorship W2406009315A5000571465 @default.
- W2406009315 hasAuthorship W2406009315A5009348332 @default.
- W2406009315 hasAuthorship W2406009315A5009644866 @default.
- W2406009315 hasAuthorship W2406009315A5040474925 @default.
- W2406009315 hasAuthorship W2406009315A5042186400 @default.
- W2406009315 hasAuthorship W2406009315A5062516688 @default.
- W2406009315 hasAuthorship W2406009315A5075897911 @default.
- W2406009315 hasConcept C103824480 @default.
- W2406009315 hasConcept C105795698 @default.
- W2406009315 hasConcept C117251300 @default.
- W2406009315 hasConcept C121332964 @default.
- W2406009315 hasConcept C127759330 @default.
- W2406009315 hasConcept C14999030 @default.
- W2406009315 hasConcept C153180895 @default.
- W2406009315 hasConcept C154945302 @default.
- W2406009315 hasConcept C197424946 @default.
- W2406009315 hasConcept C199360897 @default.
- W2406009315 hasConcept C24574437 @default.
- W2406009315 hasConcept C24890656 @default.
- W2406009315 hasConcept C2779843651 @default.
- W2406009315 hasConcept C28490314 @default.
- W2406009315 hasConcept C31972630 @default.
- W2406009315 hasConcept C33923547 @default.
- W2406009315 hasConcept C41008148 @default.
- W2406009315 hasConcept C50644808 @default.
- W2406009315 hasConcept C554190296 @default.
- W2406009315 hasConcept C76155785 @default.
- W2406009315 hasConceptScore W2406009315C103824480 @default.
- W2406009315 hasConceptScore W2406009315C105795698 @default.
- W2406009315 hasConceptScore W2406009315C117251300 @default.
- W2406009315 hasConceptScore W2406009315C121332964 @default.
- W2406009315 hasConceptScore W2406009315C127759330 @default.
- W2406009315 hasConceptScore W2406009315C14999030 @default.
- W2406009315 hasConceptScore W2406009315C153180895 @default.
- W2406009315 hasConceptScore W2406009315C154945302 @default.
- W2406009315 hasConceptScore W2406009315C197424946 @default.
- W2406009315 hasConceptScore W2406009315C199360897 @default.
- W2406009315 hasConceptScore W2406009315C24574437 @default.
- W2406009315 hasConceptScore W2406009315C24890656 @default.
- W2406009315 hasConceptScore W2406009315C2779843651 @default.
- W2406009315 hasConceptScore W2406009315C28490314 @default.
- W2406009315 hasConceptScore W2406009315C31972630 @default.
- W2406009315 hasConceptScore W2406009315C33923547 @default.
- W2406009315 hasConceptScore W2406009315C41008148 @default.
- W2406009315 hasConceptScore W2406009315C50644808 @default.
- W2406009315 hasConceptScore W2406009315C554190296 @default.
- W2406009315 hasConceptScore W2406009315C76155785 @default.