Matches in SemOpenAlex for { <https://semopenalex.org/work/W2406769439> ?p ?o ?g. }
- W2406769439 abstract "Previous chapter Next chapter Full AccessProceedings Proceedings of the 2013 SIAM International Conference on Data Mining (SDM)Multi-Transfer: Transfer Learning with Multiple Views and Multiple SourcesBen Tan, Erheng Zhong, Evan Wei Xiang, and Qiang YangBen Tan, Erheng Zhong, Evan Wei Xiang, and Qiang Yangpp.243 - 251Chapter DOI:https://doi.org/10.1137/1.9781611972832.27PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstract Transfer learning, which aims to help the learning task in a target domain by leveraging knowledge from auxiliary domains, has been demonstrated to be effective in different applications, e.g., text mining, sentiment analysis, etc. In addition, in many real-world applications, auxiliary data are described from multiple perspectives and usually carried by multiple sources. For example, to help classify videos on Youtube, which include three views/perspectives: image, voice and subtitles, one may borrow data from Flickr, Last.FM and Google News. Although any single instance in these domains can only cover a part of the views available on Youtube, actually the piece of information carried by them may compensate with each other. In this paper, we define this transfer learning problem as Transfer Learning with Multiple Views and Multiple Sources. As different sources may have different probability distributions and different views may be compensate or inconsistent with each other, merging all data in a simplistic manner will not give optimal result. Thus, we propose a novel algorithm to leverage knowledge from different views and sources collaboratively, by letting different views from different sources complement each other through a co-training style framework, while revise the distribution differences in different domains. We conduct empirical studies on several real-world datasets to show that the proposed approach can improve the classification accuracy by up to 8% against different state-of-the-art baselines. Previous chapter Next chapter RelatedDetails Published:2013ISBN:978-1-61197-262-7eISBN:978-1-61197-283-2 https://doi.org/10.1137/1.9781611972832Book Series Name:ProceedingsBook Code:PRDT13Book Pages:1-804Key words:Transfer Learning, Multi-View Learning, Multiple Data Sources" @default.
- W2406769439 created "2016-06-24" @default.
- W2406769439 creator A5012486709 @default.
- W2406769439 creator A5018132761 @default.
- W2406769439 creator A5053654789 @default.
- W2406769439 creator A5059591440 @default.
- W2406769439 date "2013-05-02" @default.
- W2406769439 modified "2023-09-27" @default.
- W2406769439 title "Multi-Transfer: Transfer Learning with Multiple Views and Multiple Sources" @default.
- W2406769439 doi "https://doi.org/10.1137/1.9781611972832.27" @default.
- W2406769439 hasPublicationYear "2013" @default.
- W2406769439 type Work @default.
- W2406769439 sameAs 2406769439 @default.
- W2406769439 citedByCount "20" @default.
- W2406769439 countsByYear W24067694392014 @default.
- W2406769439 countsByYear W24067694392015 @default.
- W2406769439 countsByYear W24067694392016 @default.
- W2406769439 countsByYear W24067694392017 @default.
- W2406769439 countsByYear W24067694392018 @default.
- W2406769439 countsByYear W24067694392019 @default.
- W2406769439 countsByYear W24067694392020 @default.
- W2406769439 countsByYear W24067694392021 @default.
- W2406769439 countsByYear W24067694392023 @default.
- W2406769439 crossrefType "proceedings-article" @default.
- W2406769439 hasAuthorship W2406769439A5012486709 @default.
- W2406769439 hasAuthorship W2406769439A5018132761 @default.
- W2406769439 hasAuthorship W2406769439A5053654789 @default.
- W2406769439 hasAuthorship W2406769439A5059591440 @default.
- W2406769439 hasBestOaLocation W24067694392 @default.
- W2406769439 hasConcept C104317684 @default.
- W2406769439 hasConcept C112313634 @default.
- W2406769439 hasConcept C119857082 @default.
- W2406769439 hasConcept C127413603 @default.
- W2406769439 hasConcept C127716648 @default.
- W2406769439 hasConcept C134306372 @default.
- W2406769439 hasConcept C150899416 @default.
- W2406769439 hasConcept C153083717 @default.
- W2406769439 hasConcept C154945302 @default.
- W2406769439 hasConcept C162324750 @default.
- W2406769439 hasConcept C173608175 @default.
- W2406769439 hasConcept C185592680 @default.
- W2406769439 hasConcept C187736073 @default.
- W2406769439 hasConcept C188082640 @default.
- W2406769439 hasConcept C204321447 @default.
- W2406769439 hasConcept C23123220 @default.
- W2406769439 hasConcept C2776175482 @default.
- W2406769439 hasConcept C2776960227 @default.
- W2406769439 hasConcept C2780428219 @default.
- W2406769439 hasConcept C2780451532 @default.
- W2406769439 hasConcept C33923547 @default.
- W2406769439 hasConcept C36503486 @default.
- W2406769439 hasConcept C41008148 @default.
- W2406769439 hasConcept C51632099 @default.
- W2406769439 hasConcept C55493867 @default.
- W2406769439 hasConcept C56739046 @default.
- W2406769439 hasConcept C78519656 @default.
- W2406769439 hasConceptScore W2406769439C104317684 @default.
- W2406769439 hasConceptScore W2406769439C112313634 @default.
- W2406769439 hasConceptScore W2406769439C119857082 @default.
- W2406769439 hasConceptScore W2406769439C127413603 @default.
- W2406769439 hasConceptScore W2406769439C127716648 @default.
- W2406769439 hasConceptScore W2406769439C134306372 @default.
- W2406769439 hasConceptScore W2406769439C150899416 @default.
- W2406769439 hasConceptScore W2406769439C153083717 @default.
- W2406769439 hasConceptScore W2406769439C154945302 @default.
- W2406769439 hasConceptScore W2406769439C162324750 @default.
- W2406769439 hasConceptScore W2406769439C173608175 @default.
- W2406769439 hasConceptScore W2406769439C185592680 @default.
- W2406769439 hasConceptScore W2406769439C187736073 @default.
- W2406769439 hasConceptScore W2406769439C188082640 @default.
- W2406769439 hasConceptScore W2406769439C204321447 @default.
- W2406769439 hasConceptScore W2406769439C23123220 @default.
- W2406769439 hasConceptScore W2406769439C2776175482 @default.
- W2406769439 hasConceptScore W2406769439C2776960227 @default.
- W2406769439 hasConceptScore W2406769439C2780428219 @default.
- W2406769439 hasConceptScore W2406769439C2780451532 @default.
- W2406769439 hasConceptScore W2406769439C33923547 @default.
- W2406769439 hasConceptScore W2406769439C36503486 @default.
- W2406769439 hasConceptScore W2406769439C41008148 @default.
- W2406769439 hasConceptScore W2406769439C51632099 @default.
- W2406769439 hasConceptScore W2406769439C55493867 @default.
- W2406769439 hasConceptScore W2406769439C56739046 @default.
- W2406769439 hasConceptScore W2406769439C78519656 @default.
- W2406769439 hasLocation W24067694391 @default.
- W2406769439 hasLocation W24067694392 @default.
- W2406769439 hasOpenAccess W2406769439 @default.
- W2406769439 hasPrimaryLocation W24067694391 @default.
- W2406769439 hasRelatedWork W2890837360 @default.
- W2406769439 hasRelatedWork W2949843150 @default.
- W2406769439 hasRelatedWork W2960456850 @default.
- W2406769439 hasRelatedWork W3021430260 @default.
- W2406769439 hasRelatedWork W4225633098 @default.
- W2406769439 hasRelatedWork W4281645081 @default.
- W2406769439 hasRelatedWork W4308262314 @default.
- W2406769439 hasRelatedWork W4312200629 @default.
- W2406769439 hasRelatedWork W4382286161 @default.
- W2406769439 hasRelatedWork W4386213806 @default.
- W2406769439 isParatext "false" @default.
- W2406769439 isRetracted "false" @default.
- W2406769439 magId "2406769439" @default.