Matches in SemOpenAlex for { <https://semopenalex.org/work/W2407449780> ?p ?o ?g. }
- W2407449780 abstract "Bacterial cold water disease (BCWD) causes significant economic losses in salmonid aquaculture, and traditional family-based breeding programs aimed at improving BCWD resistance have been limited to exploiting only between-family variation. We used genomic selection (GS) models to predict genomic breeding values (GEBVs) for BCWD resistance in 10 families from the first generation of the NCCCWA BCWD resistance breeding line, compared the predictive ability (PA) of GEBVs to pedigree-based estimated breeding values (EBVs), and compared the impact of two SNP genotyping methods on the accuracy of GEBV predictions. The BCWD phenotypes survival days (DAYS) and survival status (STATUS) had been recorded in training fish (n = 583) subjected to experimental BCWD challenge. Training fish, and their full sibs without phenotypic data that were used as parents of the subsequent generation, were genotyped using two methods: restriction-site associated DNA (RAD) sequencing and the Rainbow Trout Axiom® 57K SNP array (Chip). Animal-specific GEBVs were estimated using four GS models: BayesB, BayesC, single-step GBLUP (ssGBLUP) and weighted ssGBLUP (wssGBLUP). Family-specific EBVs were estimated using pedigree and phenotype data in the training fish only. The PA of GEBVs and EBVs was assessed by correlating mean progeny phenotype (MPP) with mid-parent EBV (family-specific) or GEBV (animal-specific). The best GEBV predictions were similar to EBV with PA values of 0.49 and 0.46 vs. 0.50 and 0.41 for DAYS and STATUS, respectively. Among the GEBV prediction methods, ssGBLUP consistently had the highest PA. The RAD genotyping platform had GEBVs with similar PA to those of GEBVs from the Chip platform. The PA of ssGBLUP and wssGBLUP methods was higher with the Chip, but for BayesB and BayesC methods it was higher with the RAD platform. The overall GEBV accuracy in this study was low to moderate, likely due to the small training sample used. This study explored the potential of GS for improving resistance to BCWD in rainbow trout using, for the first time, progeny testing data to assess the accuracy of GEBVs, and it provides the basis for further investigation on the implementation of GS in commercial rainbow trout populations." @default.
- W2407449780 created "2016-06-24" @default.
- W2407449780 creator A5001434945 @default.
- W2407449780 creator A5006638938 @default.
- W2407449780 creator A5037292871 @default.
- W2407449780 creator A5051884995 @default.
- W2407449780 creator A5052621750 @default.
- W2407449780 creator A5071739834 @default.
- W2407449780 creator A5071779686 @default.
- W2407449780 creator A5085025926 @default.
- W2407449780 creator A5087076549 @default.
- W2407449780 date "2016-05-27" @default.
- W2407449780 modified "2023-10-18" @default.
- W2407449780 title "Evaluation of Genome-Enabled Selection for Bacterial Cold Water Disease Resistance Using Progeny Performance Data in Rainbow Trout: Insights on Genotyping Methods and Genomic Prediction Models" @default.
- W2407449780 cites W1525668218 @default.
- W2407449780 cites W1607760198 @default.
- W2407449780 cites W167374121 @default.
- W2407449780 cites W1820949118 @default.
- W2407449780 cites W1825860353 @default.
- W2407449780 cites W1922806058 @default.
- W2407449780 cites W1928998639 @default.
- W2407449780 cites W1950144341 @default.
- W2407449780 cites W1967830168 @default.
- W2407449780 cites W1977978748 @default.
- W2407449780 cites W1983184732 @default.
- W2407449780 cites W1989086731 @default.
- W2407449780 cites W1994910261 @default.
- W2407449780 cites W1999398820 @default.
- W2407449780 cites W2002600206 @default.
- W2407449780 cites W2008267143 @default.
- W2407449780 cites W2008933956 @default.
- W2407449780 cites W2013592216 @default.
- W2407449780 cites W2018173063 @default.
- W2407449780 cites W2020348658 @default.
- W2407449780 cites W2023673366 @default.
- W2407449780 cites W2032972223 @default.
- W2407449780 cites W2034718764 @default.
- W2407449780 cites W2036156662 @default.
- W2407449780 cites W2041000916 @default.
- W2407449780 cites W2046914833 @default.
- W2407449780 cites W2049062627 @default.
- W2407449780 cites W2071430437 @default.
- W2407449780 cites W2073847954 @default.
- W2407449780 cites W2074043148 @default.
- W2407449780 cites W2075009410 @default.
- W2407449780 cites W207502804 @default.
- W2407449780 cites W2077500768 @default.
- W2407449780 cites W2077763475 @default.
- W2407449780 cites W2083660844 @default.
- W2407449780 cites W2083763658 @default.
- W2407449780 cites W2085315239 @default.
- W2407449780 cites W2087458357 @default.
- W2407449780 cites W2095882149 @default.
- W2407449780 cites W2097782419 @default.
- W2407449780 cites W2101272289 @default.
- W2407449780 cites W2104223233 @default.
- W2407449780 cites W2104663888 @default.
- W2407449780 cites W2105900972 @default.
- W2407449780 cites W2110787179 @default.
- W2407449780 cites W2115942882 @default.
- W2407449780 cites W2123523713 @default.
- W2407449780 cites W2127601863 @default.
- W2407449780 cites W2139682693 @default.
- W2407449780 cites W2142220815 @default.
- W2407449780 cites W2145647386 @default.
- W2407449780 cites W2152590959 @default.
- W2407449780 cites W2154331555 @default.
- W2407449780 cites W2157211770 @default.
- W2407449780 cites W2160717298 @default.
- W2407449780 cites W2161089076 @default.
- W2407449780 cites W2164678873 @default.
- W2407449780 cites W2166508695 @default.
- W2407449780 cites W2166975941 @default.
- W2407449780 cites W2169773990 @default.
- W2407449780 cites W2171501229 @default.
- W2407449780 cites W2223093350 @default.
- W2407449780 doi "https://doi.org/10.3389/fgene.2016.00096" @default.
- W2407449780 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4883007" @default.
- W2407449780 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27303436" @default.
- W2407449780 hasPublicationYear "2016" @default.
- W2407449780 type Work @default.
- W2407449780 sameAs 2407449780 @default.
- W2407449780 citedByCount "100" @default.
- W2407449780 countsByYear W24074497802016 @default.
- W2407449780 countsByYear W24074497802017 @default.
- W2407449780 countsByYear W24074497802018 @default.
- W2407449780 countsByYear W24074497802019 @default.
- W2407449780 countsByYear W24074497802020 @default.
- W2407449780 countsByYear W24074497802021 @default.
- W2407449780 countsByYear W24074497802022 @default.
- W2407449780 countsByYear W24074497802023 @default.
- W2407449780 crossrefType "journal-article" @default.
- W2407449780 hasAuthorship W2407449780A5001434945 @default.
- W2407449780 hasAuthorship W2407449780A5006638938 @default.
- W2407449780 hasAuthorship W2407449780A5037292871 @default.
- W2407449780 hasAuthorship W2407449780A5051884995 @default.
- W2407449780 hasAuthorship W2407449780A5052621750 @default.
- W2407449780 hasAuthorship W2407449780A5071739834 @default.
- W2407449780 hasAuthorship W2407449780A5071779686 @default.
- W2407449780 hasAuthorship W2407449780A5085025926 @default.