Matches in SemOpenAlex for { <https://semopenalex.org/work/W2407519077> ?p ?o ?g. }
- W2407519077 endingPage "148" @default.
- W2407519077 startingPage "1" @default.
- W2407519077 abstract "In theoretical computer science the connection between automata and logic is of fundamental importance. This connection was first considered by Buchi and Elgot in the 1960s, when they showed that the languages accepted by finite automata are precisely those languages that can be defined in monadic second-order logic (MSO). In this thesis we consider extensions of Buchi’s and Elgot’s theorem into two directions. First, we consider classes of objects which are more general than words and carry a tree-like structure. Second, we consider quantitative aspects and investigate weighted automata operating on these structures. The study of weighted automata goes back to the work of Schutzenberger. He equipped the transitions of an automaton additionally with a weight and studied the behavior of such a device which is now a formal power series, i.e. a mapping assigning to a word an element of a semiring. A semiring is the algebraic structure that carries the weights. For example, the natural numbers form a semiring, but also the probabilistic semiring given by the interval [0, 1] together with the max-operator and the usual multiplication is a semiring. This thesis investigates different weighted automaton models over tree-like structures such as texts, nested words and hedges, which have already been considered in the literature. We characterize all automaton models logically. This is achieved by considering suitable adaptions of weighted logics. The formalism of weighted logics was introduced by Droste and Gastin [1] in 2005 and provides an extension of classical MSO which is now enriched with values from a semiring in order to add quantitative expressiveness. Since already for words the full weighted MSO is expressively stronger than weighted automata, we restrict the consideration to a syntactically defined fragment called sRMSO which was proposed in [2]. Now, rather than proving for each class of structures a characterization on its own, for instance by an induction over the structure of formulae, we use a translation technique and reduce the results to ones that have already been shown. This admits the advantage that it gives insight into the similarities of the different structures. More importantly, by using the translation technique we get decidability results for the emptiness and equivalence problems from corresponding results for trees. For the case of hedges and nested words the automaton models are straightforward generalizations of the unweighted models which had already been presented in the literature. For texts, however, no automaton model had been considered so far and the model of weighted" @default.
- W2407519077 created "2016-06-24" @default.
- W2407519077 creator A5015279693 @default.
- W2407519077 date "2009-01-01" @default.
- W2407519077 modified "2023-09-27" @default.
- W2407519077 title "Weighted Automata and Weighted Logics over Tree-like Structures." @default.
- W2407519077 cites W135026144 @default.
- W2407519077 cites W1499662001 @default.
- W2407519077 cites W1500245277 @default.
- W2407519077 cites W1502876617 @default.
- W2407519077 cites W1503860275 @default.
- W2407519077 cites W1515231446 @default.
- W2407519077 cites W1541148313 @default.
- W2407519077 cites W1542543925 @default.
- W2407519077 cites W1547562281 @default.
- W2407519077 cites W1557915280 @default.
- W2407519077 cites W1571963071 @default.
- W2407519077 cites W1578332044 @default.
- W2407519077 cites W1587779614 @default.
- W2407519077 cites W1593799327 @default.
- W2407519077 cites W1600140231 @default.
- W2407519077 cites W1601810409 @default.
- W2407519077 cites W1607807395 @default.
- W2407519077 cites W1608751814 @default.
- W2407519077 cites W1626880919 @default.
- W2407519077 cites W1643571618 @default.
- W2407519077 cites W1669385163 @default.
- W2407519077 cites W1698854595 @default.
- W2407519077 cites W1708589781 @default.
- W2407519077 cites W1811576089 @default.
- W2407519077 cites W1826194655 @default.
- W2407519077 cites W1862901365 @default.
- W2407519077 cites W1870847788 @default.
- W2407519077 cites W1889920293 @default.
- W2407519077 cites W1890888469 @default.
- W2407519077 cites W1894625314 @default.
- W2407519077 cites W189731062 @default.
- W2407519077 cites W193986589 @default.
- W2407519077 cites W1971953005 @default.
- W2407519077 cites W1973940327 @default.
- W2407519077 cites W1977595510 @default.
- W2407519077 cites W1983682288 @default.
- W2407519077 cites W1984151763 @default.
- W2407519077 cites W1987028886 @default.
- W2407519077 cites W1993698725 @default.
- W2407519077 cites W1993953362 @default.
- W2407519077 cites W1993994059 @default.
- W2407519077 cites W1994146759 @default.
- W2407519077 cites W2002089154 @default.
- W2407519077 cites W2002309677 @default.
- W2407519077 cites W2003773138 @default.
- W2407519077 cites W2003895694 @default.
- W2407519077 cites W2004765838 @default.
- W2407519077 cites W2006512646 @default.
- W2407519077 cites W2008496712 @default.
- W2407519077 cites W2013085432 @default.
- W2407519077 cites W2019789808 @default.
- W2407519077 cites W2023552332 @default.
- W2407519077 cites W2023648368 @default.
- W2407519077 cites W2031277438 @default.
- W2407519077 cites W2034958470 @default.
- W2407519077 cites W2035020702 @default.
- W2407519077 cites W2040997422 @default.
- W2407519077 cites W2050407768 @default.
- W2407519077 cites W2050570613 @default.
- W2407519077 cites W2052932288 @default.
- W2407519077 cites W2054860648 @default.
- W2407519077 cites W2055840402 @default.
- W2407519077 cites W2056445915 @default.
- W2407519077 cites W2060285730 @default.
- W2407519077 cites W2064845612 @default.
- W2407519077 cites W2069276872 @default.
- W2407519077 cites W2073663206 @default.
- W2407519077 cites W2074691862 @default.
- W2407519077 cites W2086806798 @default.
- W2407519077 cites W2086959507 @default.
- W2407519077 cites W2087912140 @default.
- W2407519077 cites W2098171268 @default.
- W2407519077 cites W2106181999 @default.
- W2407519077 cites W2107260743 @default.
- W2407519077 cites W2110578408 @default.
- W2407519077 cites W2116250539 @default.
- W2407519077 cites W2125529971 @default.
- W2407519077 cites W2125939438 @default.
- W2407519077 cites W2129828874 @default.
- W2407519077 cites W2131742729 @default.
- W2407519077 cites W2131886132 @default.
- W2407519077 cites W2134382620 @default.
- W2407519077 cites W2137255106 @default.
- W2407519077 cites W2137370934 @default.
- W2407519077 cites W2141383569 @default.
- W2407519077 cites W2142746286 @default.
- W2407519077 cites W2143658255 @default.
- W2407519077 cites W2151033407 @default.
- W2407519077 cites W2155617474 @default.
- W2407519077 cites W2156824154 @default.
- W2407519077 cites W2162583406 @default.
- W2407519077 cites W2164205867 @default.