Matches in SemOpenAlex for { <https://semopenalex.org/work/W2407689222> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W2407689222 abstract "The article introduces machine learning algorithms for political scientists. These approaches should not be seen as a new method for old problems. Rather, it is important to understand the different logic of the machine learning approach. Here, data is analyzed without theoretical assumptions about possible causalities. Models are optimized according to their accuracy and robustness. While the computer can do this work more or less alone, it is the researcher's duty to make sense of these models afterward. Visualization of machine learning results, therefore, becomes very important and is in the focus of this paper. The methods that are presented and compared are decision trees, bagging, and random forests. The latter are more advanced versions of the former, relying on bootstrapping procedures. To demonstrate these methods, extreme shifts in the US budget and their connection to the attention of political actors are analyzed. The paper presents a comparison of the accuracy of different models based on ROC curves and shows how to interpret random forest models with the help of visualizations. The aim of the paper is to provide an example, how these methods can be used in political science and to highlight possible pitfalls as well as advantages of machine learning." @default.
- W2407689222 created "2016-06-24" @default.
- W2407689222 creator A5061226410 @default.
- W2407689222 date "2016-01-01" @default.
- W2407689222 modified "2023-09-28" @default.
- W2407689222 title "Decision Trees and Random Forests: Machine Learning Techniques to Classify Rare Events" @default.
- W2407689222 cites W1489423786 @default.
- W2407689222 cites W1543939397 @default.
- W2407689222 cites W2105159363 @default.
- W2407689222 cites W2126652700 @default.
- W2407689222 cites W2487770199 @default.
- W2407689222 cites W3121184170 @default.
- W2407689222 cites W612893172 @default.
- W2407689222 doi "https://doi.org/10.18278/epa.2.1.7" @default.
- W2407689222 hasPublicationYear "2016" @default.
- W2407689222 type Work @default.
- W2407689222 sameAs 2407689222 @default.
- W2407689222 citedByCount "16" @default.
- W2407689222 countsByYear W24076892222017 @default.
- W2407689222 countsByYear W24076892222018 @default.
- W2407689222 countsByYear W24076892222019 @default.
- W2407689222 countsByYear W24076892222021 @default.
- W2407689222 countsByYear W24076892222022 @default.
- W2407689222 countsByYear W24076892222023 @default.
- W2407689222 crossrefType "journal-article" @default.
- W2407689222 hasAuthorship W2407689222A5061226410 @default.
- W2407689222 hasConcept C105795698 @default.
- W2407689222 hasConcept C119857082 @default.
- W2407689222 hasConcept C154945302 @default.
- W2407689222 hasConcept C169258074 @default.
- W2407689222 hasConcept C2777317252 @default.
- W2407689222 hasConcept C33923547 @default.
- W2407689222 hasConcept C41008148 @default.
- W2407689222 hasConcept C84525736 @default.
- W2407689222 hasConceptScore W2407689222C105795698 @default.
- W2407689222 hasConceptScore W2407689222C119857082 @default.
- W2407689222 hasConceptScore W2407689222C154945302 @default.
- W2407689222 hasConceptScore W2407689222C169258074 @default.
- W2407689222 hasConceptScore W2407689222C2777317252 @default.
- W2407689222 hasConceptScore W2407689222C33923547 @default.
- W2407689222 hasConceptScore W2407689222C41008148 @default.
- W2407689222 hasConceptScore W2407689222C84525736 @default.
- W2407689222 hasIssue "1" @default.
- W2407689222 hasLocation W24076892221 @default.
- W2407689222 hasOpenAccess W2407689222 @default.
- W2407689222 hasPrimaryLocation W24076892221 @default.
- W2407689222 hasRelatedWork W3018959556 @default.
- W2407689222 hasRelatedWork W3126015411 @default.
- W2407689222 hasRelatedWork W3204641204 @default.
- W2407689222 hasRelatedWork W3211596370 @default.
- W2407689222 hasRelatedWork W4200057378 @default.
- W2407689222 hasRelatedWork W4200196661 @default.
- W2407689222 hasRelatedWork W4205958290 @default.
- W2407689222 hasRelatedWork W4249746146 @default.
- W2407689222 hasRelatedWork W4283016678 @default.
- W2407689222 hasRelatedWork W4293069612 @default.
- W2407689222 hasVolume "2" @default.
- W2407689222 isParatext "false" @default.
- W2407689222 isRetracted "false" @default.
- W2407689222 magId "2407689222" @default.
- W2407689222 workType "article" @default.