Matches in SemOpenAlex for { <https://semopenalex.org/work/W2407970264> ?p ?o ?g. }
- W2407970264 abstract "Approaches to abnormality detection in crowded scene largely rely on supervised methods using discriminative models. In this paper, we presents a novel and efficient unsupervised learning method for video analysis. We start from visual saliency, which has been used in several vision tasks, e.g., image classification, object detection, and foreground segmentation. To detect saliency regions in video sequences, we propose a new approach for detecting spatiotemporal visual saliency based on the phase spectrum of the videos, which is easy to implement and computationally efficient. With the proposed algorithm, we also study how the spatiotemporal saliency can be used in two important vision tasks, saliency prediction and abnormality detection. The proposed algorithm is evaluated on several benchmark datasets with comparison to the state-of-the-art methods from the literature. The experiments demonstrate the effectiveness of the proposed approach to spatiotemporal visual saliency detection and its application to the above vision tasks." @default.
- W2407970264 created "2016-06-24" @default.
- W2407970264 creator A5032615847 @default.
- W2407970264 creator A5039837606 @default.
- W2407970264 creator A5082549798 @default.
- W2407970264 date "2016-03-01" @default.
- W2407970264 modified "2023-09-23" @default.
- W2407970264 title "Efficient unsupervised abnormal crowd activity detection based on a spatiotemporal saliency detector" @default.
- W2407970264 cites W1510835000 @default.
- W2407970264 cites W1556471770 @default.
- W2407970264 cites W1574814547 @default.
- W2407970264 cites W1966857671 @default.
- W2407970264 cites W1968434954 @default.
- W2407970264 cites W1970342316 @default.
- W2407970264 cites W2012931101 @default.
- W2407970264 cites W2018441339 @default.
- W2407970264 cites W2028778237 @default.
- W2407970264 cites W2032007016 @default.
- W2407970264 cites W2037328649 @default.
- W2407970264 cites W2070645165 @default.
- W2407970264 cites W2093522708 @default.
- W2407970264 cites W2107055466 @default.
- W2407970264 cites W2116565096 @default.
- W2407970264 cites W2119577735 @default.
- W2407970264 cites W2120889539 @default.
- W2407970264 cites W2122361470 @default.
- W2407970264 cites W2128272608 @default.
- W2407970264 cites W2135957164 @default.
- W2407970264 cites W2137484966 @default.
- W2407970264 cites W2138092272 @default.
- W2407970264 cites W2139047169 @default.
- W2407970264 cites W2140233853 @default.
- W2407970264 cites W2146103513 @default.
- W2407970264 cites W2148870222 @default.
- W2407970264 cites W2152233525 @default.
- W2407970264 cites W2159334265 @default.
- W2407970264 cites W2164261375 @default.
- W2407970264 cites W2164489414 @default.
- W2407970264 cites W2170869852 @default.
- W2407970264 cites W2211582303 @default.
- W2407970264 cites W2294494937 @default.
- W2407970264 cites W2398273668 @default.
- W2407970264 cites W2406043435 @default.
- W2407970264 doi "https://doi.org/10.1109/wacv.2016.7477684" @default.
- W2407970264 hasPublicationYear "2016" @default.
- W2407970264 type Work @default.
- W2407970264 sameAs 2407970264 @default.
- W2407970264 citedByCount "5" @default.
- W2407970264 countsByYear W24079702642016 @default.
- W2407970264 countsByYear W24079702642018 @default.
- W2407970264 countsByYear W24079702642020 @default.
- W2407970264 countsByYear W24079702642022 @default.
- W2407970264 crossrefType "proceedings-article" @default.
- W2407970264 hasAuthorship W2407970264A5032615847 @default.
- W2407970264 hasAuthorship W2407970264A5039837606 @default.
- W2407970264 hasAuthorship W2407970264A5082549798 @default.
- W2407970264 hasConcept C115961682 @default.
- W2407970264 hasConcept C124504099 @default.
- W2407970264 hasConcept C13280743 @default.
- W2407970264 hasConcept C153180895 @default.
- W2407970264 hasConcept C154945302 @default.
- W2407970264 hasConcept C15744967 @default.
- W2407970264 hasConcept C185798385 @default.
- W2407970264 hasConcept C202227193 @default.
- W2407970264 hasConcept C205649164 @default.
- W2407970264 hasConcept C2776151529 @default.
- W2407970264 hasConcept C2779679900 @default.
- W2407970264 hasConcept C31972630 @default.
- W2407970264 hasConcept C36464697 @default.
- W2407970264 hasConcept C41008148 @default.
- W2407970264 hasConcept C50965678 @default.
- W2407970264 hasConcept C77805123 @default.
- W2407970264 hasConcept C89600930 @default.
- W2407970264 hasConcept C97931131 @default.
- W2407970264 hasConceptScore W2407970264C115961682 @default.
- W2407970264 hasConceptScore W2407970264C124504099 @default.
- W2407970264 hasConceptScore W2407970264C13280743 @default.
- W2407970264 hasConceptScore W2407970264C153180895 @default.
- W2407970264 hasConceptScore W2407970264C154945302 @default.
- W2407970264 hasConceptScore W2407970264C15744967 @default.
- W2407970264 hasConceptScore W2407970264C185798385 @default.
- W2407970264 hasConceptScore W2407970264C202227193 @default.
- W2407970264 hasConceptScore W2407970264C205649164 @default.
- W2407970264 hasConceptScore W2407970264C2776151529 @default.
- W2407970264 hasConceptScore W2407970264C2779679900 @default.
- W2407970264 hasConceptScore W2407970264C31972630 @default.
- W2407970264 hasConceptScore W2407970264C36464697 @default.
- W2407970264 hasConceptScore W2407970264C41008148 @default.
- W2407970264 hasConceptScore W2407970264C50965678 @default.
- W2407970264 hasConceptScore W2407970264C77805123 @default.
- W2407970264 hasConceptScore W2407970264C89600930 @default.
- W2407970264 hasConceptScore W2407970264C97931131 @default.
- W2407970264 hasLocation W24079702641 @default.
- W2407970264 hasOpenAccess W2407970264 @default.
- W2407970264 hasPrimaryLocation W24079702641 @default.
- W2407970264 hasRelatedWork W1679630208 @default.
- W2407970264 hasRelatedWork W1988845730 @default.
- W2407970264 hasRelatedWork W2085964072 @default.
- W2407970264 hasRelatedWork W2091140892 @default.
- W2407970264 hasRelatedWork W2204408462 @default.