Matches in SemOpenAlex for { <https://semopenalex.org/work/W2409773285> ?p ?o ?g. }
- W2409773285 endingPage "82" @default.
- W2409773285 startingPage "73" @default.
- W2409773285 abstract "To better understand the functions of proteins, it is a critical step to predict their subcellular locations. Recently, numerous computational methods have been developed for protein subcellular localization prediction. Most of existing methods rely on the Gene Ontology (GO) information for feature representation. Although the GO information is proved to be beneficial for the improved predictive performance of the methods in prior research, the following problem is that it generates a super-high dimensional feature space, and the dimension of the feature space will get higher and higher as the number of the terms in the GO database increase. To address this issue, we propose a novel feature representation method sufficiently exploring the sequence evolutional information rather than using the GO information. Using the proposed feature representation method, we generate a comprehensive feature set of 828 features from the following three aspects: physicochemical properties, position-specific score matrix (PSSM), and the k-skip-n-gram model. By featuring a multi-label ensemble classifier with the proposed features, we further develop a novel multi-label learning method, namely mGOF-loc. Results on an updated large-scale dataset distributed with 37 subcellular locations show that mGOF-loc outperforms existing methods. Currently, a webserver that implements mGOF-loc is freely available on http://server.malab.cn/mGOF-loc/Index.html." @default.
- W2409773285 created "2016-06-24" @default.
- W2409773285 creator A5011508278 @default.
- W2409773285 creator A5033232360 @default.
- W2409773285 creator A5035153282 @default.
- W2409773285 creator A5067221645 @default.
- W2409773285 creator A5074344681 @default.
- W2409773285 date "2016-12-01" @default.
- W2409773285 modified "2023-10-16" @default.
- W2409773285 title "mGOF-loc: A novel ensemble learning method for human protein subcellular localization prediction" @default.
- W2409773285 cites W1494484168 @default.
- W2409773285 cites W1574783410 @default.
- W2409773285 cites W1763867024 @default.
- W2409773285 cites W1869662868 @default.
- W2409773285 cites W1978172542 @default.
- W2409773285 cites W1982289655 @default.
- W2409773285 cites W1982321556 @default.
- W2409773285 cites W1990909403 @default.
- W2409773285 cites W1991244466 @default.
- W2409773285 cites W1993791542 @default.
- W2409773285 cites W1993996526 @default.
- W2409773285 cites W1994352963 @default.
- W2409773285 cites W2001168095 @default.
- W2409773285 cites W2002849025 @default.
- W2409773285 cites W2007765030 @default.
- W2409773285 cites W2009470087 @default.
- W2409773285 cites W2009758767 @default.
- W2409773285 cites W2010211703 @default.
- W2409773285 cites W2012352014 @default.
- W2409773285 cites W2012481064 @default.
- W2409773285 cites W2012686113 @default.
- W2409773285 cites W2017277794 @default.
- W2409773285 cites W2020194549 @default.
- W2409773285 cites W2022603493 @default.
- W2409773285 cites W2029580264 @default.
- W2409773285 cites W2032007066 @default.
- W2409773285 cites W2036154117 @default.
- W2409773285 cites W2038873127 @default.
- W2409773285 cites W2044143373 @default.
- W2409773285 cites W2045747807 @default.
- W2409773285 cites W2047187013 @default.
- W2409773285 cites W2048960012 @default.
- W2409773285 cites W2053963319 @default.
- W2409773285 cites W2058839892 @default.
- W2409773285 cites W2060698367 @default.
- W2409773285 cites W2061881231 @default.
- W2409773285 cites W2062296203 @default.
- W2409773285 cites W2065755128 @default.
- W2409773285 cites W2070980386 @default.
- W2409773285 cites W2072778860 @default.
- W2409773285 cites W2074552757 @default.
- W2409773285 cites W2080638317 @default.
- W2409773285 cites W2080915318 @default.
- W2409773285 cites W2087782437 @default.
- W2409773285 cites W2088117005 @default.
- W2409773285 cites W2088344044 @default.
- W2409773285 cites W2092369184 @default.
- W2409773285 cites W2093864416 @default.
- W2409773285 cites W2094560491 @default.
- W2409773285 cites W2096939566 @default.
- W2409773285 cites W2097606916 @default.
- W2409773285 cites W2101595316 @default.
- W2409773285 cites W2103934447 @default.
- W2409773285 cites W2106612397 @default.
- W2409773285 cites W2118101156 @default.
- W2409773285 cites W2124266758 @default.
- W2409773285 cites W2127103767 @default.
- W2409773285 cites W2128392253 @default.
- W2409773285 cites W2131871423 @default.
- W2409773285 cites W2132402247 @default.
- W2409773285 cites W2139166279 @default.
- W2409773285 cites W2143510743 @default.
- W2409773285 cites W2145957695 @default.
- W2409773285 cites W2146146101 @default.
- W2409773285 cites W2146628513 @default.
- W2409773285 cites W2147660582 @default.
- W2409773285 cites W2148853951 @default.
- W2409773285 cites W2150047146 @default.
- W2409773285 cites W2151790371 @default.
- W2409773285 cites W2163884975 @default.
- W2409773285 cites W2169043568 @default.
- W2409773285 cites W2171475093 @default.
- W2409773285 cites W2317552386 @default.
- W2409773285 cites W2334475967 @default.
- W2409773285 cites W4236354716 @default.
- W2409773285 doi "https://doi.org/10.1016/j.neucom.2015.09.137" @default.
- W2409773285 hasPublicationYear "2016" @default.
- W2409773285 type Work @default.
- W2409773285 sameAs 2409773285 @default.
- W2409773285 citedByCount "25" @default.
- W2409773285 countsByYear W24097732852016 @default.
- W2409773285 countsByYear W24097732852017 @default.
- W2409773285 countsByYear W24097732852018 @default.
- W2409773285 countsByYear W24097732852019 @default.
- W2409773285 countsByYear W24097732852020 @default.
- W2409773285 countsByYear W24097732852021 @default.
- W2409773285 countsByYear W24097732852022 @default.
- W2409773285 countsByYear W24097732852023 @default.