Matches in SemOpenAlex for { <https://semopenalex.org/work/W2410006390> ?p ?o ?g. }
- W2410006390 endingPage "169" @default.
- W2410006390 startingPage "169" @default.
- W2410006390 abstract "(Aim) Classification of brain images as pathological or healthy case is a key pre-clinical step for potential patients. Manual classification is irreproducible and unreliable. In this study, we aim to develop an automatic classification system of brain images in magnetic resonance imaging (MRI). (Method) Three datasets were downloaded from the Internet. Those images are of T2-weighted along axial plane with size of 256 × 256. We utilized an s-level decomposition on the basis of dual-tree complex wavelet transform (DTCWT), in order to obtain 12s “variance and entropy (VE)” features from each subband. Afterwards, we used support vector machine (SVM) and its two variants: the generalized eigenvalue proximal SVM (GEPSVM) and the twin SVM (TSVM), as the classifiers. In all, we proposed three novel approaches: DTCWT + VE + SVM, DTCWT + VE + GEPSVM, and DTCWT + VE + TSVM. (Results) The results showed that our “DTCWT + VE + TSVM” obtained an average accuracy of 99.57%, which was not only better than the two other proposed methods, but also superior to 12 state-of-the-art approaches. In addition, parameter estimation showed the classification accuracy achieved the largest when the decomposition level s was assigned with a value of 1. Further, we used 100 slices from real subjects, and we found our proposed method was superior to human reports from neuroradiologists. (Conclusions) This proposed system is effective and feasible." @default.
- W2410006390 created "2016-06-24" @default.
- W2410006390 creator A5007987858 @default.
- W2410006390 creator A5013315695 @default.
- W2410006390 creator A5028974886 @default.
- W2410006390 creator A5053886291 @default.
- W2410006390 creator A5061929421 @default.
- W2410006390 creator A5090965728 @default.
- W2410006390 date "2016-06-03" @default.
- W2410006390 modified "2023-09-26" @default.
- W2410006390 title "Dual-Tree Complex Wavelet Transform and Twin Support Vector Machine for Pathological Brain Detection" @default.
- W2410006390 cites W1093064829 @default.
- W2410006390 cites W1475705016 @default.
- W2410006390 cites W1523244756 @default.
- W2410006390 cites W1537090536 @default.
- W2410006390 cites W1551813830 @default.
- W2410006390 cites W1556158994 @default.
- W2410006390 cites W1672221038 @default.
- W2410006390 cites W1912141599 @default.
- W2410006390 cites W1924812291 @default.
- W2410006390 cites W1967551258 @default.
- W2410006390 cites W1976437208 @default.
- W2410006390 cites W1977875437 @default.
- W2410006390 cites W1982789392 @default.
- W2410006390 cites W1987769400 @default.
- W2410006390 cites W1992147070 @default.
- W2410006390 cites W1994152198 @default.
- W2410006390 cites W2002301998 @default.
- W2410006390 cites W2017896827 @default.
- W2410006390 cites W2018260277 @default.
- W2410006390 cites W2019184604 @default.
- W2410006390 cites W2029808708 @default.
- W2410006390 cites W2038344945 @default.
- W2410006390 cites W2045781709 @default.
- W2410006390 cites W2047914690 @default.
- W2410006390 cites W2049586412 @default.
- W2410006390 cites W2057201794 @default.
- W2410006390 cites W2060117429 @default.
- W2410006390 cites W2068449649 @default.
- W2410006390 cites W2069937076 @default.
- W2410006390 cites W2070051876 @default.
- W2410006390 cites W2070582299 @default.
- W2410006390 cites W2070644180 @default.
- W2410006390 cites W2074056222 @default.
- W2410006390 cites W2075710390 @default.
- W2410006390 cites W2080591050 @default.
- W2410006390 cites W2080621840 @default.
- W2410006390 cites W2083504715 @default.
- W2410006390 cites W2088565616 @default.
- W2410006390 cites W2098765040 @default.
- W2410006390 cites W2102257030 @default.
- W2410006390 cites W2132425109 @default.
- W2410006390 cites W2153567216 @default.
- W2410006390 cites W2168944483 @default.
- W2410006390 cites W2170860445 @default.
- W2410006390 cites W2174673307 @default.
- W2410006390 cites W2177332526 @default.
- W2410006390 cites W2194999895 @default.
- W2410006390 cites W2253728893 @default.
- W2410006390 cites W2257979135 @default.
- W2410006390 cites W2258632097 @default.
- W2410006390 cites W2275123641 @default.
- W2410006390 cites W2281858122 @default.
- W2410006390 cites W2296119179 @default.
- W2410006390 cites W2297863442 @default.
- W2410006390 cites W2320901998 @default.
- W2410006390 cites W2400559871 @default.
- W2410006390 cites W2558107930 @default.
- W2410006390 cites W4237440449 @default.
- W2410006390 doi "https://doi.org/10.3390/app6060169" @default.
- W2410006390 hasPublicationYear "2016" @default.
- W2410006390 type Work @default.
- W2410006390 sameAs 2410006390 @default.
- W2410006390 citedByCount "102" @default.
- W2410006390 countsByYear W24100063902016 @default.
- W2410006390 countsByYear W24100063902017 @default.
- W2410006390 countsByYear W24100063902018 @default.
- W2410006390 countsByYear W24100063902019 @default.
- W2410006390 countsByYear W24100063902020 @default.
- W2410006390 countsByYear W24100063902021 @default.
- W2410006390 countsByYear W24100063902022 @default.
- W2410006390 countsByYear W24100063902023 @default.
- W2410006390 crossrefType "journal-article" @default.
- W2410006390 hasAuthorship W2410006390A5007987858 @default.
- W2410006390 hasAuthorship W2410006390A5013315695 @default.
- W2410006390 hasAuthorship W2410006390A5028974886 @default.
- W2410006390 hasAuthorship W2410006390A5053886291 @default.
- W2410006390 hasAuthorship W2410006390A5061929421 @default.
- W2410006390 hasAuthorship W2410006390A5090965728 @default.
- W2410006390 hasBestOaLocation W24100063901 @default.
- W2410006390 hasConcept C12267149 @default.
- W2410006390 hasConcept C153180895 @default.
- W2410006390 hasConcept C154945302 @default.
- W2410006390 hasConcept C196216189 @default.
- W2410006390 hasConcept C2777885455 @default.
- W2410006390 hasConcept C33923547 @default.
- W2410006390 hasConcept C41008148 @default.
- W2410006390 hasConcept C46286280 @default.