Matches in SemOpenAlex for { <https://semopenalex.org/work/W2410362566> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2410362566 abstract "This paper describes pattern recognition of electromyography (EMG) signal during load lifting using Artificial Neural Network (ANN). EMG is a method to measure and record the muscle activity when individuals perform certain operation and actions. This research will classify the EMG signal based on force apply to the arm due to the gravity act on it during load lifting. Recognizing pattern based on EMG signal is not an easy task because of the nonlinearities behavior of the signal. It required a good classifier to distinguish each pattern. The motivation of this project is to help the person suffer with hemiparesis to perform daily activities as well as to improve the lifestyle. It is important for patients to realize the hopes of hemiparesis after experiencing their inability to do activity as a normal human. Recognizing EMG pattern is crucially important for rehabilitation control that enables the patients to lift the heavy load despite of their muscle weaknesses. Therefore, a proper analysis of muscle behavior is necessary. The objectives of this research are to extract the important features of EMG signal using time domain analysis and to classify EMG signal based on load lifting using ANN. The experiment was performed to five subjects that were selected mainly based on criteria specified. The EMG signals are acquired at long head biceps brachii. Then, the subjects were asked to lift the loads of 2kg, 5kg, and 7kg. It is expected an accurate classifier which can recognize the pattern precisely and could be further used for arm rehabilitation control." @default.
- W2410362566 created "2016-06-24" @default.
- W2410362566 creator A5007771879 @default.
- W2410362566 creator A5038935920 @default.
- W2410362566 creator A5044187670 @default.
- W2410362566 creator A5048533403 @default.
- W2410362566 creator A5088623807 @default.
- W2410362566 date "2015-11-01" @default.
- W2410362566 modified "2023-09-30" @default.
- W2410362566 title "Pattern recognition of EMG signal during load lifting using Artificial Neural Network (ANN)" @default.
- W2410362566 cites W2002499457 @default.
- W2410362566 cites W2123167643 @default.
- W2410362566 cites W2133201420 @default.
- W2410362566 cites W2158728671 @default.
- W2410362566 cites W2178178772 @default.
- W2410362566 doi "https://doi.org/10.1109/iccsce.2015.7482179" @default.
- W2410362566 hasPublicationYear "2015" @default.
- W2410362566 type Work @default.
- W2410362566 sameAs 2410362566 @default.
- W2410362566 citedByCount "5" @default.
- W2410362566 countsByYear W24103625662017 @default.
- W2410362566 countsByYear W24103625662019 @default.
- W2410362566 countsByYear W24103625662021 @default.
- W2410362566 countsByYear W24103625662023 @default.
- W2410362566 crossrefType "proceedings-article" @default.
- W2410362566 hasAuthorship W2410362566A5007771879 @default.
- W2410362566 hasAuthorship W2410362566A5038935920 @default.
- W2410362566 hasAuthorship W2410362566A5044187670 @default.
- W2410362566 hasAuthorship W2410362566A5048533403 @default.
- W2410362566 hasAuthorship W2410362566A5088623807 @default.
- W2410362566 hasConcept C118552586 @default.
- W2410362566 hasConcept C119857082 @default.
- W2410362566 hasConcept C139002025 @default.
- W2410362566 hasConcept C153180895 @default.
- W2410362566 hasConcept C154945302 @default.
- W2410362566 hasConcept C199360897 @default.
- W2410362566 hasConcept C2776882386 @default.
- W2410362566 hasConcept C2777515770 @default.
- W2410362566 hasConcept C2779843651 @default.
- W2410362566 hasConcept C2781156865 @default.
- W2410362566 hasConcept C2781425419 @default.
- W2410362566 hasConcept C41008148 @default.
- W2410362566 hasConcept C50644808 @default.
- W2410362566 hasConcept C71924100 @default.
- W2410362566 hasConcept C95623464 @default.
- W2410362566 hasConcept C99508421 @default.
- W2410362566 hasConceptScore W2410362566C118552586 @default.
- W2410362566 hasConceptScore W2410362566C119857082 @default.
- W2410362566 hasConceptScore W2410362566C139002025 @default.
- W2410362566 hasConceptScore W2410362566C153180895 @default.
- W2410362566 hasConceptScore W2410362566C154945302 @default.
- W2410362566 hasConceptScore W2410362566C199360897 @default.
- W2410362566 hasConceptScore W2410362566C2776882386 @default.
- W2410362566 hasConceptScore W2410362566C2777515770 @default.
- W2410362566 hasConceptScore W2410362566C2779843651 @default.
- W2410362566 hasConceptScore W2410362566C2781156865 @default.
- W2410362566 hasConceptScore W2410362566C2781425419 @default.
- W2410362566 hasConceptScore W2410362566C41008148 @default.
- W2410362566 hasConceptScore W2410362566C50644808 @default.
- W2410362566 hasConceptScore W2410362566C71924100 @default.
- W2410362566 hasConceptScore W2410362566C95623464 @default.
- W2410362566 hasConceptScore W2410362566C99508421 @default.
- W2410362566 hasLocation W24103625661 @default.
- W2410362566 hasOpenAccess W2410362566 @default.
- W2410362566 hasPrimaryLocation W24103625661 @default.
- W2410362566 hasRelatedWork W2085543463 @default.
- W2410362566 hasRelatedWork W2167582322 @default.
- W2410362566 hasRelatedWork W2245837416 @default.
- W2410362566 hasRelatedWork W2272615628 @default.
- W2410362566 hasRelatedWork W2563096758 @default.
- W2410362566 hasRelatedWork W2742991909 @default.
- W2410362566 hasRelatedWork W2972035100 @default.
- W2410362566 hasRelatedWork W3030415147 @default.
- W2410362566 hasRelatedWork W2142414134 @default.
- W2410362566 hasRelatedWork W3158004940 @default.
- W2410362566 isParatext "false" @default.
- W2410362566 isRetracted "false" @default.
- W2410362566 magId "2410362566" @default.
- W2410362566 workType "article" @default.