Matches in SemOpenAlex for { <https://semopenalex.org/work/W2411754387> ?p ?o ?g. }
- W2411754387 endingPage "145" @default.
- W2411754387 startingPage "133" @default.
- W2411754387 abstract "Fine-featured elastograms may provide additional information of radiological interest in the context of in vivo elastography. Here a new image processing pipeline called ESP (Elastography Software Pipeline) is developed to create Magnetic Resonance Elastography (MRE) maps of viscoelastic parameters (complex modulus magnitude |G*| and loss angle ϕ) that preserve fine-scale information through nonlinear, multi-scale extensions of typical MRE post-processing techniques. Methods: A new MRE image processing pipeline was developed that incorporates wavelet-domain denoising, image-driven noise estimation, and feature detection. ESP was first validated using simulated data, including viscoelastic Finite Element Method (FEM) simulations, at multiple noise levels. ESP images were compared with MDEV pipeline images, both in the FEM models and in three ten-subject cohorts of brain, thigh, and liver acquisitions. ESP and MDEV mean values were compared to 2D local frequency estimation (LFE) mean values for the same cohorts as a benchmark. Finally, the proportion of spectral energy at fine frequencies was quantified using the Reduced Energy Ratio (RER) for both ESP and MDEV. Results: Blind estimates of added noise (σ) were within 5.3% ± 2.6% of prescribed, and the same technique estimated σ in the in vivo cohorts at 1.7 ± 0.8%. A 5 × 5 × 5 truncated Gabor filter bank effectively detects local spatial frequencies at wavelengths λ ≤ 10px. For FEM inversions, mean |G*| of hard target, soft target, and background remained within 8% of prescribed up to σ=20%, and mean ϕ results were within 10%, excepting hard target ϕ, which required redrawing around a ring artefact to achieve similar accuracy. Inspection of FEM |G*| images showed some spatial distortion around hard target boundaries and inspection of ϕ images showed ring artefacts around the same target. For the in vivo cohorts, ESP results showed mean correlation of R=0.83 with MDEV and liver stiffness estimates within 7% of 2D-LFE results. Finally, ESP showed statistically significant increase in fine feature spectral energy as measured with RER for both |G*| (p<1×10−9) and ϕ (p<1×10−3). Conclusion: Information at finer frequencies can be recovered in ESP elastograms in typical experimental conditions, however scatter- and boundary-related artefacts may cause the fine features to have inaccurate values. In in vivo cohorts, ESP delivers an increase in fine feature spectral energy, and better performance with longer wavelengths, than MDEV while showing similar stability and robustness." @default.
- W2411754387 created "2016-06-24" @default.
- W2411754387 creator A5006147877 @default.
- W2411754387 creator A5007935196 @default.
- W2411754387 creator A5009285324 @default.
- W2411754387 creator A5036162867 @default.
- W2411754387 creator A5045905418 @default.
- W2411754387 creator A5065861470 @default.
- W2411754387 creator A5066508060 @default.
- W2411754387 creator A5068391541 @default.
- W2411754387 creator A5073774291 @default.
- W2411754387 date "2017-01-01" @default.
- W2411754387 modified "2023-10-01" @default.
- W2411754387 title "Nonlinear multiscale regularisation in MR elastography: Towards fine feature mapping" @default.
- W2411754387 cites W1914305028 @default.
- W2411754387 cites W1969583173 @default.
- W2411754387 cites W1971501364 @default.
- W2411754387 cites W1972082465 @default.
- W2411754387 cites W1983927733 @default.
- W2411754387 cites W1992567980 @default.
- W2411754387 cites W1993277224 @default.
- W2411754387 cites W2018332268 @default.
- W2411754387 cites W2023005931 @default.
- W2411754387 cites W2023412716 @default.
- W2411754387 cites W2026786928 @default.
- W2411754387 cites W2036291324 @default.
- W2411754387 cites W2037393485 @default.
- W2411754387 cites W2045595048 @default.
- W2411754387 cites W2049198657 @default.
- W2411754387 cites W2052667073 @default.
- W2411754387 cites W2078485419 @default.
- W2411754387 cites W2078950765 @default.
- W2411754387 cites W2079724595 @default.
- W2411754387 cites W2083039650 @default.
- W2411754387 cites W2106816878 @default.
- W2411754387 cites W2115718371 @default.
- W2411754387 cites W2119840720 @default.
- W2411754387 cites W2122688057 @default.
- W2411754387 cites W2145741983 @default.
- W2411754387 cites W2147506787 @default.
- W2411754387 cites W2152072871 @default.
- W2411754387 cites W2160547390 @default.
- W2411754387 doi "https://doi.org/10.1016/j.media.2016.05.012" @default.
- W2411754387 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27376240" @default.
- W2411754387 hasPublicationYear "2017" @default.
- W2411754387 type Work @default.
- W2411754387 sameAs 2411754387 @default.
- W2411754387 citedByCount "43" @default.
- W2411754387 countsByYear W24117543872016 @default.
- W2411754387 countsByYear W24117543872017 @default.
- W2411754387 countsByYear W24117543872018 @default.
- W2411754387 countsByYear W24117543872019 @default.
- W2411754387 countsByYear W24117543872020 @default.
- W2411754387 countsByYear W24117543872021 @default.
- W2411754387 countsByYear W24117543872022 @default.
- W2411754387 countsByYear W24117543872023 @default.
- W2411754387 crossrefType "journal-article" @default.
- W2411754387 hasAuthorship W2411754387A5006147877 @default.
- W2411754387 hasAuthorship W2411754387A5007935196 @default.
- W2411754387 hasAuthorship W2411754387A5009285324 @default.
- W2411754387 hasAuthorship W2411754387A5036162867 @default.
- W2411754387 hasAuthorship W2411754387A5045905418 @default.
- W2411754387 hasAuthorship W2411754387A5065861470 @default.
- W2411754387 hasAuthorship W2411754387A5066508060 @default.
- W2411754387 hasAuthorship W2411754387A5068391541 @default.
- W2411754387 hasAuthorship W2411754387A5073774291 @default.
- W2411754387 hasBestOaLocation W24117543872 @default.
- W2411754387 hasConcept C104293457 @default.
- W2411754387 hasConcept C106131492 @default.
- W2411754387 hasConcept C115961682 @default.
- W2411754387 hasConcept C120665830 @default.
- W2411754387 hasConcept C121332964 @default.
- W2411754387 hasConcept C127313418 @default.
- W2411754387 hasConcept C135628077 @default.
- W2411754387 hasConcept C138885662 @default.
- W2411754387 hasConcept C143753070 @default.
- W2411754387 hasConcept C151730666 @default.
- W2411754387 hasConcept C153180895 @default.
- W2411754387 hasConcept C154945302 @default.
- W2411754387 hasConcept C199360897 @default.
- W2411754387 hasConcept C24890656 @default.
- W2411754387 hasConcept C2776401178 @default.
- W2411754387 hasConcept C2777690781 @default.
- W2411754387 hasConcept C2779124084 @default.
- W2411754387 hasConcept C2779343474 @default.
- W2411754387 hasConcept C31972630 @default.
- W2411754387 hasConcept C41008148 @default.
- W2411754387 hasConcept C41895202 @default.
- W2411754387 hasConcept C43521106 @default.
- W2411754387 hasConcept C9417928 @default.
- W2411754387 hasConcept C97355855 @default.
- W2411754387 hasConcept C99498987 @default.
- W2411754387 hasConceptScore W2411754387C104293457 @default.
- W2411754387 hasConceptScore W2411754387C106131492 @default.
- W2411754387 hasConceptScore W2411754387C115961682 @default.
- W2411754387 hasConceptScore W2411754387C120665830 @default.
- W2411754387 hasConceptScore W2411754387C121332964 @default.
- W2411754387 hasConceptScore W2411754387C127313418 @default.