Matches in SemOpenAlex for { <https://semopenalex.org/work/W2412651437> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2412651437 endingPage "411" @default.
- W2412651437 startingPage "393" @default.
- W2412651437 abstract "• IDs are probabilistic graphical models used to represent and solve decision problems under uncertainty. • Interval-valued IDs allow to gain realism in the modeling and perform a sensitivity analysis in precise IDs. • The variable elimination and arc reversal inference algorithms are generalized to evaluate interval-valued IDs. • The experimental work shows a better accuracy of the new methods based on linear programming. Influence diagrams are probabilistic graphical models used to represent and solve sequential decision problems under uncertainty. Sharp numerical values are required to quantify probabilities and utilities. This might be an issue with real models, whose parameters are typically obtained from expert judgments or partially reliable data. We consider an interval-valued quantification of the parameters to gain realism in the modeling and evaluate the sensitivity of the inferences with respect to perturbations in the sharp values of the parameters. An extension of the classical influence diagrams formalism to support such interval-valued potentials is presented. The variable elimination and arc reversal inference algorithms are generalized to cope with these models. At the price of an outer approximation, the extension keeps the same complexity as with sharp values. Numerical experiments show improved performances with respect to previous methods. As a natural application, we propose these models for practical sensitivity analysis in traditional influence diagrams. The maximum perturbation level on single or multiple parameters preserving the optimal strategy can be computed. This allows the identification of the parameters deserving a more careful elicitation." @default.
- W2412651437 created "2016-06-24" @default.
- W2412651437 creator A5002770026 @default.
- W2412651437 creator A5033099294 @default.
- W2412651437 creator A5051102821 @default.
- W2412651437 creator A5057510662 @default.
- W2412651437 date "2017-01-01" @default.
- W2412651437 modified "2023-10-17" @default.
- W2412651437 title "Evaluating interval-valued influence diagrams" @default.
- W2412651437 cites W1972748205 @default.
- W2412651437 cites W1986102227 @default.
- W2412651437 cites W1986610361 @default.
- W2412651437 cites W2016603074 @default.
- W2412651437 cites W2021475457 @default.
- W2412651437 cites W2036376268 @default.
- W2412651437 cites W2036740975 @default.
- W2412651437 cites W2049886280 @default.
- W2412651437 cites W2077618895 @default.
- W2412651437 cites W2095476364 @default.
- W2412651437 cites W2113677269 @default.
- W2412651437 cites W2114952291 @default.
- W2412651437 cites W2121616055 @default.
- W2412651437 cites W2126653228 @default.
- W2412651437 cites W2146423256 @default.
- W2412651437 cites W2913772900 @default.
- W2412651437 cites W3103732008 @default.
- W2412651437 doi "https://doi.org/10.1016/j.ijar.2016.05.004" @default.
- W2412651437 hasPublicationYear "2017" @default.
- W2412651437 type Work @default.
- W2412651437 sameAs 2412651437 @default.
- W2412651437 citedByCount "7" @default.
- W2412651437 countsByYear W24126514372018 @default.
- W2412651437 countsByYear W24126514372019 @default.
- W2412651437 countsByYear W24126514372020 @default.
- W2412651437 countsByYear W24126514372021 @default.
- W2412651437 countsByYear W24126514372023 @default.
- W2412651437 crossrefType "journal-article" @default.
- W2412651437 hasAuthorship W2412651437A5002770026 @default.
- W2412651437 hasAuthorship W2412651437A5033099294 @default.
- W2412651437 hasAuthorship W2412651437A5051102821 @default.
- W2412651437 hasAuthorship W2412651437A5057510662 @default.
- W2412651437 hasBestOaLocation W24126514371 @default.
- W2412651437 hasConcept C105795698 @default.
- W2412651437 hasConcept C114614502 @default.
- W2412651437 hasConcept C2778067643 @default.
- W2412651437 hasConcept C33923547 @default.
- W2412651437 hasConceptScore W2412651437C105795698 @default.
- W2412651437 hasConceptScore W2412651437C114614502 @default.
- W2412651437 hasConceptScore W2412651437C2778067643 @default.
- W2412651437 hasConceptScore W2412651437C33923547 @default.
- W2412651437 hasFunder F4320321837 @default.
- W2412651437 hasFunder F4320326754 @default.
- W2412651437 hasFunder F4320335322 @default.
- W2412651437 hasLocation W24126514371 @default.
- W2412651437 hasLocation W24126514372 @default.
- W2412651437 hasOpenAccess W2412651437 @default.
- W2412651437 hasPrimaryLocation W24126514371 @default.
- W2412651437 hasRelatedWork W1592683135 @default.
- W2412651437 hasRelatedWork W1984138193 @default.
- W2412651437 hasRelatedWork W2043099224 @default.
- W2412651437 hasRelatedWork W2045297403 @default.
- W2412651437 hasRelatedWork W2051221975 @default.
- W2412651437 hasRelatedWork W2119158312 @default.
- W2412651437 hasRelatedWork W2159964792 @default.
- W2412651437 hasRelatedWork W3037784022 @default.
- W2412651437 hasRelatedWork W4229963900 @default.
- W2412651437 hasRelatedWork W861025093 @default.
- W2412651437 hasVolume "80" @default.
- W2412651437 isParatext "false" @default.
- W2412651437 isRetracted "false" @default.
- W2412651437 magId "2412651437" @default.
- W2412651437 workType "article" @default.