Matches in SemOpenAlex for { <https://semopenalex.org/work/W241291220> ?p ?o ?g. }
- W241291220 endingPage "183" @default.
- W241291220 startingPage "170" @default.
- W241291220 abstract "This study was conducted in order to model energy consumption and greenhouse gas emissions for peanut production in Guilan province of Iran using artificial neural network (ANN). Also, the multi-objective genetic algorithm was used for optimization of energy inputs and GHG emissions in the region. Data were randomly collected from 120 farms in Astaneh Ashrafiyeh city with face to face questionnaire method. The results illustrated that the total energy consumption and the average yield were calculated as 19248.04 MJ ha-1 and 3488.39 kg ha -1 , respectively. Moreover, the results showed that the share of chemical fertilizers (mainly nitrogen) and diesel fuel energy to the total energy input were the highest. Also, the energy used efficiency ratio calculated as 4.53. The results of GHG emissions analysis showed the total GHG emissions were 571.18 kgCO2eq. ha -1 and the diesel fuel has the main reasonable of GHG emissions in peanut production. In this study, several direct and indirect factors have been identified to create a model based on ANN to predict energy use and GHG emissions in peanut production. The ANN model with 9-22-2 structure was capable of predicting the peanut yield and GHG emissions. Moreover, the results of the best topology showed that R 2 was 0.994 and 0.999, RMSE was 0.076 and 0.003 and MAPE was 0.174 and 0.009 for peanut yield and GHG emissions, respectively. The results of optimization indicated the total energy consumption and GHG emissions generation was calculated about 6888 MJ ha -1 and 159.08 kgCO2eq. ha -1 , respectively. The total GHG emissions reduction was found to be 412.09 kgCO2eq. ha -1 in optimal generation toward present farms." @default.
- W241291220 created "2016-06-24" @default.
- W241291220 creator A5009537783 @default.
- W241291220 creator A5056117468 @default.
- W241291220 creator A5086396172 @default.
- W241291220 date "2014-04-11" @default.
- W241291220 modified "2023-09-23" @default.
- W241291220 title "Applying artificial neural networks and multi-objective genetic algorithm to modeling and optimization of energy inputs and greenhouse gas emissions for peanut production" @default.
- W241291220 cites W1497256448 @default.
- W241291220 cites W1941251101 @default.
- W241291220 cites W1964965997 @default.
- W241291220 cites W1969617598 @default.
- W241291220 cites W1970405052 @default.
- W241291220 cites W1974310235 @default.
- W241291220 cites W1974394235 @default.
- W241291220 cites W1977288149 @default.
- W241291220 cites W1984422631 @default.
- W241291220 cites W1987857502 @default.
- W241291220 cites W1991626857 @default.
- W241291220 cites W1992237552 @default.
- W241291220 cites W1996045323 @default.
- W241291220 cites W2004742220 @default.
- W241291220 cites W2010653666 @default.
- W241291220 cites W2014882422 @default.
- W241291220 cites W2020272145 @default.
- W241291220 cites W2020834735 @default.
- W241291220 cites W2024878195 @default.
- W241291220 cites W2025840800 @default.
- W241291220 cites W2026083729 @default.
- W241291220 cites W2031509136 @default.
- W241291220 cites W2032198469 @default.
- W241291220 cites W2036807483 @default.
- W241291220 cites W2042044583 @default.
- W241291220 cites W2043258198 @default.
- W241291220 cites W2047074759 @default.
- W241291220 cites W2047450756 @default.
- W241291220 cites W2047521304 @default.
- W241291220 cites W2048617024 @default.
- W241291220 cites W2062809246 @default.
- W241291220 cites W2070456503 @default.
- W241291220 cites W2083986273 @default.
- W241291220 cites W2088902416 @default.
- W241291220 cites W2092110142 @default.
- W241291220 cites W2093521297 @default.
- W241291220 cites W2101245019 @default.
- W241291220 cites W2105101734 @default.
- W241291220 cites W2115318817 @default.
- W241291220 cites W2123098628 @default.
- W241291220 cites W2129477063 @default.
- W241291220 cites W2129497909 @default.
- W241291220 cites W2141069475 @default.
- W241291220 cites W2166561096 @default.
- W241291220 cites W2256578114 @default.
- W241291220 cites W576943417 @default.
- W241291220 doi "https://doi.org/10.12692/ijb/4.7.170-183" @default.
- W241291220 hasPublicationYear "2014" @default.
- W241291220 type Work @default.
- W241291220 sameAs 241291220 @default.
- W241291220 citedByCount "2" @default.
- W241291220 countsByYear W2412912202016 @default.
- W241291220 countsByYear W2412912202021 @default.
- W241291220 crossrefType "journal-article" @default.
- W241291220 hasAuthorship W241291220A5009537783 @default.
- W241291220 hasAuthorship W241291220A5056117468 @default.
- W241291220 hasAuthorship W241291220A5086396172 @default.
- W241291220 hasConcept C119599485 @default.
- W241291220 hasConcept C127413603 @default.
- W241291220 hasConcept C138171918 @default.
- W241291220 hasConcept C150903083 @default.
- W241291220 hasConcept C18903297 @default.
- W241291220 hasConcept C2780165032 @default.
- W241291220 hasConcept C32198211 @default.
- W241291220 hasConcept C33923547 @default.
- W241291220 hasConcept C39432304 @default.
- W241291220 hasConcept C47737302 @default.
- W241291220 hasConcept C548081761 @default.
- W241291220 hasConcept C6557445 @default.
- W241291220 hasConcept C86803240 @default.
- W241291220 hasConcept C87717796 @default.
- W241291220 hasConcept C88463610 @default.
- W241291220 hasConceptScore W241291220C119599485 @default.
- W241291220 hasConceptScore W241291220C127413603 @default.
- W241291220 hasConceptScore W241291220C138171918 @default.
- W241291220 hasConceptScore W241291220C150903083 @default.
- W241291220 hasConceptScore W241291220C18903297 @default.
- W241291220 hasConceptScore W241291220C2780165032 @default.
- W241291220 hasConceptScore W241291220C32198211 @default.
- W241291220 hasConceptScore W241291220C33923547 @default.
- W241291220 hasConceptScore W241291220C39432304 @default.
- W241291220 hasConceptScore W241291220C47737302 @default.
- W241291220 hasConceptScore W241291220C548081761 @default.
- W241291220 hasConceptScore W241291220C6557445 @default.
- W241291220 hasConceptScore W241291220C86803240 @default.
- W241291220 hasConceptScore W241291220C87717796 @default.
- W241291220 hasConceptScore W241291220C88463610 @default.
- W241291220 hasLocation W2412912201 @default.
- W241291220 hasOpenAccess W241291220 @default.
- W241291220 hasPrimaryLocation W2412912201 @default.