Matches in SemOpenAlex for { <https://semopenalex.org/work/W2413030767> ?p ?o ?g. }
- W2413030767 endingPage "694" @default.
- W2413030767 startingPage "686" @default.
- W2413030767 abstract "Real-time monitoring of tissue status during thermal ablation of tumors is critical to ensure complete destruction of tumor mass, while avoiding tissue charring and excessive damage to normal tissues. Currently, magnetic resonance thermometry (MRT), along with magnetic resonance imaging (MRI), is the most commonly used technique for monitoring and assessing thermal ablation process in soft tissues. MRT/MRI is very expensive, bulky, and often subject to motion artifacts. On the other hand, light propagation within tissue is sensitive to changes in tissue microstructure and physiology which could be used to directly quantify the extent of tissue damage. Furthermore, optical monitoring can be a portable, and cost-effective alternative for monitoring a thermal ablation process. The main objective of this study, is to establish a correlation between changes in tissue optical properties and the status of tissue coagulation/damage during heating of ex vivo tissues.A portable diffuse reflectance spectroscopy system and a side-firing fiber-optic probe were developed to study the absorption (μa (λ)), and reduced scattering coefficients (μ's (λ)) of native and coagulated ex vivo porcine, and chicken breast tissues. In the first experiment, both porcine and chicken breast tissues were heated at discrete temperature points between 24 and 140°C for 2 minutes. Diffuse reflectance spectra (430-630 nm) of native and coagulated tissues were recorded prior to, and post heating. In a second experiment, porcine tissue samples were heated at 70°C and diffuse reflectance spectra were recorded continuously during heating. The μa (λ) and μ's (λ) of the tissues were extracted from the measured diffuse reflectance spectra using an inverse Monte-Carlo model of diffuse reflectance. Tissue heating was stopped when the wavelength-averaged scattering plateaued.The wavelength-averaged optical properties, <μ's (λ)> and <μa (λ)>, for native porcine tissues (n = 66) at room temperature, were 5.4 ± 0.3 cm(-1) and 0.780 ± 0.008 cm(-1) (SD), respectively. The <μ's (λ)> and <μa (λ)> for native chicken breast tissues (n = 66) at room temperature, were 2.69 ± 0.08 cm(-1) and 0.29 ± 0.01 cm(-1) (SD), respectively. In the first experiment, the <μ's (λ)> of coagulated porcine and chicken breast tissue rose to 56.4 ± 3.6 cm(-1) at 68.7 ± 1.7°C (SD), and 52.8 ± 1 cm(-1) at 57.1 ± 1.5°C (SD), respectively. Correspondingly, the <μa (λ)> of coagulated porcine (140.6°C), and chicken breast tissues (130°C) were 0.75 ± 0.05 cm(-1) and 0.263 ± 0.004 cm(-1) (SD). For both tissues, charring was observed at temperatures above 80°C. During continuous monitoring of porcine tissue (with connective tissues) heating, the <μ's (λ)> started to rise rapidly from 13.7 ± 1.5 minutes and plateaued at 19 ± 2.5 (SD) minutes. The <μ's (λ)> plateaued at 11.7 ± 3 (SD) minutes for porcine tissue devoid of connective tissue between probe and tissue surface. No charring was observed during continuous monitoring of thermal ablation process.The changes in optical absorption and scattering properties can be continuously quantified, which could be used as a diagnostic biomarker for assessing tissue coagulation/damage during thermal ablation. Lasers Surg. Med. 48:686-694, 2016. © 2016 Wiley Periodicals, Inc." @default.
- W2413030767 created "2016-06-24" @default.
- W2413030767 creator A5056040171 @default.
- W2413030767 creator A5070648746 @default.
- W2413030767 date "2016-06-01" @default.
- W2413030767 modified "2023-10-12" @default.
- W2413030767 title "Monitoring of tissue optical properties during thermal coagulation of ex vivo tissues" @default.
- W2413030767 cites W1855836187 @default.
- W2413030767 cites W1912437295 @default.
- W2413030767 cites W1965976319 @default.
- W2413030767 cites W1966488552 @default.
- W2413030767 cites W1974071367 @default.
- W2413030767 cites W1981591254 @default.
- W2413030767 cites W1981860057 @default.
- W2413030767 cites W1987071092 @default.
- W2413030767 cites W1988135590 @default.
- W2413030767 cites W1989568798 @default.
- W2413030767 cites W1998000914 @default.
- W2413030767 cites W1999355247 @default.
- W2413030767 cites W2011379556 @default.
- W2413030767 cites W2030237863 @default.
- W2413030767 cites W2030291426 @default.
- W2413030767 cites W2033163894 @default.
- W2413030767 cites W2037440424 @default.
- W2413030767 cites W2039788044 @default.
- W2413030767 cites W2042669918 @default.
- W2413030767 cites W2047857719 @default.
- W2413030767 cites W2048254842 @default.
- W2413030767 cites W2050054249 @default.
- W2413030767 cites W2062209863 @default.
- W2413030767 cites W2063665738 @default.
- W2413030767 cites W2069817381 @default.
- W2413030767 cites W2070400542 @default.
- W2413030767 cites W2074957702 @default.
- W2413030767 cites W2081344028 @default.
- W2413030767 cites W2087181357 @default.
- W2413030767 cites W2089014183 @default.
- W2413030767 cites W2093856523 @default.
- W2413030767 cites W2098082345 @default.
- W2413030767 cites W2099244809 @default.
- W2413030767 cites W2102996947 @default.
- W2413030767 cites W2109324071 @default.
- W2413030767 cites W2128530055 @default.
- W2413030767 cites W2136215251 @default.
- W2413030767 cites W2138490081 @default.
- W2413030767 cites W2158378333 @default.
- W2413030767 cites W2169119609 @default.
- W2413030767 cites W2205961872 @default.
- W2413030767 cites W2325200795 @default.
- W2413030767 cites W233859847 @default.
- W2413030767 cites W2396118171 @default.
- W2413030767 cites W2483500811 @default.
- W2413030767 cites W2512178782 @default.
- W2413030767 cites W2597840716 @default.
- W2413030767 cites W3188855170 @default.
- W2413030767 cites W4233326001 @default.
- W2413030767 cites W4244326439 @default.
- W2413030767 cites W4252833305 @default.
- W2413030767 cites W70733517 @default.
- W2413030767 doi "https://doi.org/10.1002/lsm.22541" @default.
- W2413030767 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27250022" @default.
- W2413030767 hasPublicationYear "2016" @default.
- W2413030767 type Work @default.
- W2413030767 sameAs 2413030767 @default.
- W2413030767 citedByCount "21" @default.
- W2413030767 countsByYear W24130307672017 @default.
- W2413030767 countsByYear W24130307672018 @default.
- W2413030767 countsByYear W24130307672020 @default.
- W2413030767 countsByYear W24130307672021 @default.
- W2413030767 countsByYear W24130307672022 @default.
- W2413030767 countsByYear W24130307672023 @default.
- W2413030767 crossrefType "journal-article" @default.
- W2413030767 hasAuthorship W2413030767A5056040171 @default.
- W2413030767 hasAuthorship W2413030767A5070648746 @default.
- W2413030767 hasBestOaLocation W24130307672 @default.
- W2413030767 hasConcept C121332964 @default.
- W2413030767 hasConcept C125287762 @default.
- W2413030767 hasConcept C126322002 @default.
- W2413030767 hasConcept C126838900 @default.
- W2413030767 hasConcept C136229726 @default.
- W2413030767 hasConcept C142724271 @default.
- W2413030767 hasConcept C143409427 @default.
- W2413030767 hasConcept C150903083 @default.
- W2413030767 hasConcept C156328458 @default.
- W2413030767 hasConcept C159985019 @default.
- W2413030767 hasConcept C161790260 @default.
- W2413030767 hasConcept C185592680 @default.
- W2413030767 hasConcept C192562407 @default.
- W2413030767 hasConcept C207001950 @default.
- W2413030767 hasConcept C26291073 @default.
- W2413030767 hasConcept C2778902805 @default.
- W2413030767 hasConcept C46141821 @default.
- W2413030767 hasConcept C55493867 @default.
- W2413030767 hasConcept C65165184 @default.
- W2413030767 hasConcept C71924100 @default.
- W2413030767 hasConcept C73546260 @default.
- W2413030767 hasConcept C86803240 @default.
- W2413030767 hasConceptScore W2413030767C121332964 @default.