Matches in SemOpenAlex for { <https://semopenalex.org/work/W2413331013> ?p ?o ?g. }
- W2413331013 endingPage "2125" @default.
- W2413331013 startingPage "2117" @default.
- W2413331013 abstract "The question of why mammalian systems use nitric oxide (NO), a potentially hazardous and toxic diatomic, as a signaling molecule to mediate important functions such as vasodilation (blood pressure control) and nerve signal transduction initially perplexed researchers when this discovery was made in the 1980s. Through extensive research over the past two decades, it is now well rationalized why NO is used in vivo for these signaling functions, and that heme proteins play a dominant role in NO signaling in mammals. Key insight into the properties of heme-nitrosyl complexes that make heme proteins so well poised to take full advantage of the unique properties of NO has come from in-depth structural, spectroscopic, and theoretical studies on ferrous and ferric heme-nitrosyls. This Account highlights recent findings that have led to greater understanding of the electronic structures of heme-nitrosyls, and the contributions that model complex studies have made to elucidate Fe-NO bonding are highlighted. These results are then discussed in the context of the biological functions of heme-nitrosyls, in particular in soluble guanylate cyclase (sGC; NO signaling), nitrophorins (NO transport), and NO-producing enzymes. Central to this Account is the thermodynamic σ-trans effect of NO, and how this relates to the activation of the universal mammalian NO sensor sGC, which uses a ferrous heme as the high affinity NO detection unit. It is shown via detailed spectroscopic and computational studies that the strong and very covalent Fe(II)-NO σ-bond is at the heart of the strong thermodynamic σ-trans effect of NO, which greatly weakens the proximal Fe-NHis (or Fe-SCys) bond in six-coordinate ferrous heme-nitrosyls. In sGC, this causes the dissociation of the proximally bound histidine ligand upon NO binding to the ferrous heme, inducing a significant conformational change that activates the sGC catalytic domain for the production of cGMP. This, in turn, leads to vasodilation and nerve signal transduction. Studies on ferrous heme-nitrosyl model complexes have allowed for a quantification of this thermodynamic σ-trans effect of NO, through the use of high-resolution crystal structures, binding constant studies, single-crystal vibrational spectroscopy and density functional theory (DFT) calculations. These studies have further identified the singly occupied molecular orbital (SOMO) of the NO complexes as the key MO that mediates the thermodynamic σ-trans effect of NO. In comparison to ferrous heme-nitrosyls, ferric heme-nitrosyls display thermodynamically much weaker Fe-NO bonds (from NO binding constants), but at the same time much stronger Fe-NO bonds in their ground states (from vibrational spectroscopy). Using spectroscopic investigations coupled to DFT calculations, this apparent contradiction has been rationalized with the involvement of at least three different electronic states in the binding/dissociation of NO to/from ferric hemes. This is of key significance for the release of NO from NO-producing enzymes like NOS, and further forms the basis for ferric hemes to serve as NO transporters in biological systems." @default.
- W2413331013 created "2016-06-24" @default.
- W2413331013 creator A5011061327 @default.
- W2413331013 creator A5060573657 @default.
- W2413331013 date "2015-06-26" @default.
- W2413331013 modified "2023-10-12" @default.
- W2413331013 title "Heme-Nitrosyls: Electronic Structure Implications for Function in Biology" @default.
- W2413331013 cites W136256204 @default.
- W2413331013 cites W1509418264 @default.
- W2413331013 cites W1556153644 @default.
- W2413331013 cites W1969479825 @default.
- W2413331013 cites W1970467033 @default.
- W2413331013 cites W1973875475 @default.
- W2413331013 cites W1976741760 @default.
- W2413331013 cites W1978795487 @default.
- W2413331013 cites W1979446775 @default.
- W2413331013 cites W1987581382 @default.
- W2413331013 cites W1988841674 @default.
- W2413331013 cites W1991378960 @default.
- W2413331013 cites W1994211699 @default.
- W2413331013 cites W2000803926 @default.
- W2413331013 cites W2007534357 @default.
- W2413331013 cites W2007709726 @default.
- W2413331013 cites W2016205740 @default.
- W2413331013 cites W2017368764 @default.
- W2413331013 cites W2019787060 @default.
- W2413331013 cites W2020623560 @default.
- W2413331013 cites W2026699278 @default.
- W2413331013 cites W2027056314 @default.
- W2413331013 cites W2034091457 @default.
- W2413331013 cites W2040395643 @default.
- W2413331013 cites W2044866035 @default.
- W2413331013 cites W2049595568 @default.
- W2413331013 cites W2052677611 @default.
- W2413331013 cites W2055625563 @default.
- W2413331013 cites W2057230018 @default.
- W2413331013 cites W2068555097 @default.
- W2413331013 cites W2078160714 @default.
- W2413331013 cites W2087676078 @default.
- W2413331013 cites W2089843457 @default.
- W2413331013 cites W2093285141 @default.
- W2413331013 cites W2099312302 @default.
- W2413331013 cites W2115516033 @default.
- W2413331013 cites W2127027843 @default.
- W2413331013 cites W2131351657 @default.
- W2413331013 cites W2133709520 @default.
- W2413331013 cites W2145385387 @default.
- W2413331013 cites W2162387553 @default.
- W2413331013 cites W2313918456 @default.
- W2413331013 cites W2331298557 @default.
- W2413331013 cites W2482063898 @default.
- W2413331013 doi "https://doi.org/10.1021/acs.accounts.5b00167" @default.
- W2413331013 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26114618" @default.
- W2413331013 hasPublicationYear "2015" @default.
- W2413331013 type Work @default.
- W2413331013 sameAs 2413331013 @default.
- W2413331013 citedByCount "102" @default.
- W2413331013 countsByYear W24133310132015 @default.
- W2413331013 countsByYear W24133310132016 @default.
- W2413331013 countsByYear W24133310132017 @default.
- W2413331013 countsByYear W24133310132018 @default.
- W2413331013 countsByYear W24133310132019 @default.
- W2413331013 countsByYear W24133310132020 @default.
- W2413331013 countsByYear W24133310132021 @default.
- W2413331013 countsByYear W24133310132022 @default.
- W2413331013 countsByYear W24133310132023 @default.
- W2413331013 crossrefType "journal-article" @default.
- W2413331013 hasAuthorship W2413331013A5011061327 @default.
- W2413331013 hasAuthorship W2413331013A5060573657 @default.
- W2413331013 hasBestOaLocation W24133310131 @default.
- W2413331013 hasConcept C12554922 @default.
- W2413331013 hasConcept C150555746 @default.
- W2413331013 hasConcept C151730666 @default.
- W2413331013 hasConcept C178790620 @default.
- W2413331013 hasConcept C180577832 @default.
- W2413331013 hasConcept C181199279 @default.
- W2413331013 hasConcept C185592680 @default.
- W2413331013 hasConcept C20705724 @default.
- W2413331013 hasConcept C2775832776 @default.
- W2413331013 hasConcept C2776217839 @default.
- W2413331013 hasConcept C2779343474 @default.
- W2413331013 hasConcept C55493867 @default.
- W2413331013 hasConcept C62478195 @default.
- W2413331013 hasConcept C86803240 @default.
- W2413331013 hasConceptScore W2413331013C12554922 @default.
- W2413331013 hasConceptScore W2413331013C150555746 @default.
- W2413331013 hasConceptScore W2413331013C151730666 @default.
- W2413331013 hasConceptScore W2413331013C178790620 @default.
- W2413331013 hasConceptScore W2413331013C180577832 @default.
- W2413331013 hasConceptScore W2413331013C181199279 @default.
- W2413331013 hasConceptScore W2413331013C185592680 @default.
- W2413331013 hasConceptScore W2413331013C20705724 @default.
- W2413331013 hasConceptScore W2413331013C2775832776 @default.
- W2413331013 hasConceptScore W2413331013C2776217839 @default.
- W2413331013 hasConceptScore W2413331013C2779343474 @default.
- W2413331013 hasConceptScore W2413331013C55493867 @default.
- W2413331013 hasConceptScore W2413331013C62478195 @default.
- W2413331013 hasConceptScore W2413331013C86803240 @default.