Matches in SemOpenAlex for { <https://semopenalex.org/work/W2413379912> ?p ?o ?g. }
- W2413379912 endingPage "78" @default.
- W2413379912 startingPage "58" @default.
- W2413379912 abstract "Gaussian processes (GPs) have experienced tremendous success in biogeophysical parameter retrieval in the last few years. GPs constitute a solid Bayesian framework to consistently formulate many function approximation problems. This article reviews the main theoretical GP developments in the field, considering new algorithms that respect signal and noise characteristics, extract knowledge via automatic relevance kernels to yield feature rankings automatically, and allow applicability of associated uncertainty intervals to transport GP models in space and time that can be used to uncover causal relations between variables and can encode physically meaningful prior knowledge via radiative transfer model (RTM) emulation. The important issue of computational efficiency will also be addressed. These developments are illustrated in the field of geosciences and remote sensing at local and global scales through a set of illustrative examples. In particular, important problems for land, ocean, and atmosphere monitoring are considered, from accurately estimating oceanic chlorophyll content and pigments to retrieving vegetation properties from multi- and hyperspectral sensors as well as estimating atmospheric parameters (e.g., temperature, moisture, and ozone) from infrared sounders." @default.
- W2413379912 created "2016-06-24" @default.
- W2413379912 creator A5031882613 @default.
- W2413379912 creator A5039052506 @default.
- W2413379912 creator A5043046183 @default.
- W2413379912 creator A5065281659 @default.
- W2413379912 creator A5079448372 @default.
- W2413379912 creator A5085480844 @default.
- W2413379912 date "2016-06-01" @default.
- W2413379912 modified "2023-09-27" @default.
- W2413379912 title "A Survey on Gaussian Processes for Earth-Observation Data Analysis: A Comprehensive Investigation" @default.
- W2413379912 cites W1561865685 @default.
- W2413379912 cites W1667828214 @default.
- W2413379912 cites W1964357740 @default.
- W2413379912 cites W1973333099 @default.
- W2413379912 cites W1976049118 @default.
- W2413379912 cites W1978223575 @default.
- W2413379912 cites W1978239093 @default.
- W2413379912 cites W1980881904 @default.
- W2413379912 cites W1986812364 @default.
- W2413379912 cites W1987607942 @default.
- W2413379912 cites W2003997831 @default.
- W2413379912 cites W2007101051 @default.
- W2413379912 cites W2007342648 @default.
- W2413379912 cites W2007866903 @default.
- W2413379912 cites W2007939589 @default.
- W2413379912 cites W2009283886 @default.
- W2413379912 cites W2009619252 @default.
- W2413379912 cites W2013061102 @default.
- W2413379912 cites W2018044188 @default.
- W2413379912 cites W2020677872 @default.
- W2413379912 cites W2026871688 @default.
- W2413379912 cites W2036745212 @default.
- W2413379912 cites W2045331152 @default.
- W2413379912 cites W2052256290 @default.
- W2413379912 cites W2052648234 @default.
- W2413379912 cites W2055825444 @default.
- W2413379912 cites W2056435747 @default.
- W2413379912 cites W2059209174 @default.
- W2413379912 cites W2071190035 @default.
- W2413379912 cites W2072490792 @default.
- W2413379912 cites W2079630883 @default.
- W2413379912 cites W2083933193 @default.
- W2413379912 cites W2098630016 @default.
- W2413379912 cites W2099365903 @default.
- W2413379912 cites W2108460995 @default.
- W2413379912 cites W2121025745 @default.
- W2413379912 cites W2122889842 @default.
- W2413379912 cites W2126479957 @default.
- W2413379912 cites W2130670721 @default.
- W2413379912 cites W2131126673 @default.
- W2413379912 cites W2143789670 @default.
- W2413379912 cites W2148376635 @default.
- W2413379912 cites W2161815745 @default.
- W2413379912 cites W2164330327 @default.
- W2413379912 cites W2167556755 @default.
- W2413379912 cites W2167881994 @default.
- W2413379912 cites W2171125286 @default.
- W2413379912 cites W2171408260 @default.
- W2413379912 cites W221493477 @default.
- W2413379912 cites W2271414963 @default.
- W2413379912 cites W3022609586 @default.
- W2413379912 cites W4234588049 @default.
- W2413379912 cites W4376463272 @default.
- W2413379912 cites W633320881 @default.
- W2413379912 doi "https://doi.org/10.1109/mgrs.2015.2510084" @default.
- W2413379912 hasPublicationYear "2016" @default.
- W2413379912 type Work @default.
- W2413379912 sameAs 2413379912 @default.
- W2413379912 citedByCount "158" @default.
- W2413379912 countsByYear W24133799122016 @default.
- W2413379912 countsByYear W24133799122017 @default.
- W2413379912 countsByYear W24133799122018 @default.
- W2413379912 countsByYear W24133799122019 @default.
- W2413379912 countsByYear W24133799122020 @default.
- W2413379912 countsByYear W24133799122021 @default.
- W2413379912 countsByYear W24133799122022 @default.
- W2413379912 countsByYear W24133799122023 @default.
- W2413379912 crossrefType "journal-article" @default.
- W2413379912 hasAuthorship W2413379912A5031882613 @default.
- W2413379912 hasAuthorship W2413379912A5039052506 @default.
- W2413379912 hasAuthorship W2413379912A5043046183 @default.
- W2413379912 hasAuthorship W2413379912A5065281659 @default.
- W2413379912 hasAuthorship W2413379912A5079448372 @default.
- W2413379912 hasAuthorship W2413379912A5085480844 @default.
- W2413379912 hasBestOaLocation W24133799122 @default.
- W2413379912 hasConcept C107673813 @default.
- W2413379912 hasConcept C121332964 @default.
- W2413379912 hasConcept C149810388 @default.
- W2413379912 hasConcept C153294291 @default.
- W2413379912 hasConcept C154945302 @default.
- W2413379912 hasConcept C159078339 @default.
- W2413379912 hasConcept C162324750 @default.
- W2413379912 hasConcept C163716315 @default.
- W2413379912 hasConcept C202444582 @default.
- W2413379912 hasConcept C205649164 @default.
- W2413379912 hasConcept C33923547 @default.
- W2413379912 hasConcept C39432304 @default.