Matches in SemOpenAlex for { <https://semopenalex.org/work/W2413442649> ?p ?o ?g. }
- W2413442649 endingPage "102" @default.
- W2413442649 startingPage "83" @default.
- W2413442649 abstract "High resolution melting (HRM) curve analysis is an efficient, correct, and rapid technique for analyzing real-time polymerase chain reaction (PCR) results. HRM curves are formed based on increasing temperature and decreasing amount of fluorescent dye in real-time PCR process. The shapes of them are unique for each species due to the sequence, length, and GC content of species' DNA. In the literature, the classification of HRM curves is usually conducted through visual inspection and a limited number of data mining methods have been used to classify these curves. However, it becomes challenging as the number of species and their samples and the number of closely related species increase. In this study, a hybrid classification model, which is based on convolutional neural network (CNN) and long short-term memory (LSTM) models, is proposed to classify HRM curves, efficiently. In the proposed CNN-LSTM model, CNN model was used for feature extraction, and LSTM model was used for classification. It takes both the HRM curves and derivative curves as inputs and gives the predicted species of HRM curves as outputs. The performance of the proposed CNN-LSTM model was compared with that of CNN and support vector machines (SVM) approaches. The results show that the proposed CNN-LSTM model outperforms other models. The accuracy, macro-average of F1, specificity, precision, and recall values of the proposed model were 0.96±0.02,0.95±0.02,1±0,0.96±0.02, and 0.96±0.02, respectively." @default.
- W2413442649 created "2016-06-24" @default.
- W2413442649 creator A5028058252 @default.
- W2413442649 creator A5069092692 @default.
- W2413442649 date "1980-04-01" @default.
- W2413442649 modified "2023-10-17" @default.
- W2413442649 title "Use of Alpha-fetoprotein for Diagnosis of Neural Tube and Other Anomalies" @default.
- W2413442649 cites W1493907615 @default.
- W2413442649 cites W1522469112 @default.
- W2413442649 cites W1529070096 @default.
- W2413442649 cites W1598169752 @default.
- W2413442649 cites W1601719448 @default.
- W2413442649 cites W1779936519 @default.
- W2413442649 cites W1885622901 @default.
- W2413442649 cites W1923538805 @default.
- W2413442649 cites W1946818757 @default.
- W2413442649 cites W1969085402 @default.
- W2413442649 cites W1970837350 @default.
- W2413442649 cites W1971693752 @default.
- W2413442649 cites W1974298265 @default.
- W2413442649 cites W1975226260 @default.
- W2413442649 cites W1988344148 @default.
- W2413442649 cites W1988763981 @default.
- W2413442649 cites W1988769857 @default.
- W2413442649 cites W1989255982 @default.
- W2413442649 cites W1998591720 @default.
- W2413442649 cites W1999055697 @default.
- W2413442649 cites W2000610497 @default.
- W2413442649 cites W2001774406 @default.
- W2413442649 cites W2003166212 @default.
- W2413442649 cites W2007307788 @default.
- W2413442649 cites W2010452390 @default.
- W2413442649 cites W2010815026 @default.
- W2413442649 cites W2015066444 @default.
- W2413442649 cites W2017838381 @default.
- W2413442649 cites W2018828591 @default.
- W2413442649 cites W2019723103 @default.
- W2413442649 cites W2021014697 @default.
- W2413442649 cites W2023602156 @default.
- W2413442649 cites W2024465954 @default.
- W2413442649 cites W2031641663 @default.
- W2413442649 cites W2038984781 @default.
- W2413442649 cites W2042113484 @default.
- W2413442649 cites W2048401024 @default.
- W2413442649 cites W2055174697 @default.
- W2413442649 cites W2064375952 @default.
- W2413442649 cites W2072167444 @default.
- W2413442649 cites W2073196751 @default.
- W2413442649 cites W2073951690 @default.
- W2413442649 cites W2074706410 @default.
- W2413442649 cites W2075109858 @default.
- W2413442649 cites W2080612756 @default.
- W2413442649 cites W2081719217 @default.
- W2413442649 cites W2082663778 @default.
- W2413442649 cites W2086363895 @default.
- W2413442649 cites W2086676672 @default.
- W2413442649 cites W2087959406 @default.
- W2413442649 cites W2091543698 @default.
- W2413442649 cites W2092481608 @default.
- W2413442649 cites W2100908528 @default.
- W2413442649 cites W2102043217 @default.
- W2413442649 cites W2103990783 @default.
- W2413442649 cites W2111304078 @default.
- W2413442649 cites W2114130908 @default.
- W2413442649 cites W2124469852 @default.
- W2413442649 cites W2128167574 @default.
- W2413442649 cites W2143708472 @default.
- W2413442649 cites W2158655707 @default.
- W2413442649 cites W2160315699 @default.
- W2413442649 cites W2166369941 @default.
- W2413442649 cites W2167601951 @default.
- W2413442649 cites W3026230662 @default.
- W2413442649 cites W4236672808 @default.
- W2413442649 cites W4301913821 @default.
- W2413442649 doi "https://doi.org/10.1016/s0306-3356(21)00222-3" @default.
- W2413442649 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/6155238" @default.
- W2413442649 hasPublicationYear "1980" @default.
- W2413442649 type Work @default.
- W2413442649 sameAs 2413442649 @default.
- W2413442649 citedByCount "2" @default.
- W2413442649 crossrefType "journal-article" @default.
- W2413442649 hasAuthorship W2413442649A5028058252 @default.
- W2413442649 hasAuthorship W2413442649A5069092692 @default.
- W2413442649 hasConcept C105795698 @default.
- W2413442649 hasConcept C119857082 @default.
- W2413442649 hasConcept C12267149 @default.
- W2413442649 hasConcept C153180895 @default.
- W2413442649 hasConcept C154945302 @default.
- W2413442649 hasConcept C171606756 @default.
- W2413442649 hasConcept C33923547 @default.
- W2413442649 hasConcept C41008148 @default.
- W2413442649 hasConcept C49453240 @default.
- W2413442649 hasConcept C50644808 @default.
- W2413442649 hasConcept C64943373 @default.
- W2413442649 hasConcept C81363708 @default.
- W2413442649 hasConceptScore W2413442649C105795698 @default.
- W2413442649 hasConceptScore W2413442649C119857082 @default.
- W2413442649 hasConceptScore W2413442649C12267149 @default.