Matches in SemOpenAlex for { <https://semopenalex.org/work/W2413502283> ?p ?o ?g. }
- W2413502283 abstract "Existing microarray studies of bone mineral density (BMD) have been critical for understanding the pathophysiology of osteoporosis, and have identified a number of candidate genes. However, these studies were limited by their relatively small sample sizes and were usually analyzed individually. Here, we propose a novel network-based meta-analysis approach that combines data across six microarray studies to identify functional modules from human protein-protein interaction (PPI) data, and highlight several differentially expressed genes (DEGs) and a functional module that may play an important role in BMD regulation in women.Expression profiling studies were identified by searching PubMed, Gene Expression Omnibus (GEO) and ArrayExpress. Two meta-analysis methods were applied across different gene expression profiling studies. The first, a nonparametric Fisher's method, combined p-values from individual experiments to identify genes with large effect sizes. The second method combined effect sizes from individual datasets into a meta-effect size to gain a higher precision of effect size estimation across all datasets. Genes with Q test's p-values < 0.05 or I(2) values > 50% were assessed by a random effects model and the remainder by a fixed effects model. Using Fisher's combined p-values, functional modules were identified through an integrated analysis of microarray data in the context of large protein-protein interaction (PPI) networks. Two previously published meta-analysis studies of genome-wide association (GWA) datasets were used to determine whether these module genes were genetically associated with BMD. Pathway enrichment analysis was performed with a hypergeometric test.Six gene expression datasets were identified, which included a total of 249 (129 high BMD and 120 low BMD) female subjects. Using a network-based meta-analysis, a consensus module containing 58 genes (nodes) and 83 edges was detected. Pathway enrichment analysis of the 58 module genes revealed that these genes were enriched in several important KEGG pathways including Osteoclast differentiation, B cell receptor signaling pathway, MAPK signaling pathway, Chemokine signaling pathway and Insulin signaling pathway. The importance of module genes was replicated by demonstrating that most module genes were genetically associated with BMD in the GWAS data sets. Meta-analyses were performed at the individual gene level by combining p-values and effect sizes. Five candidate genes (ESR1, MAP3K3, PYGM, RAC1 and SYK) were identified based on gene expression meta-analysis, and their associations with BMD were also replicated by two BMD meta-analysis studies.In summary, our network-based meta-analysis not only identified important differentially expressed genes but also discovered biologically meaningful functional modules for BMD determination. Our study may provide novel therapeutic targets for osteoporosis in women." @default.
- W2413502283 created "2016-06-24" @default.
- W2413502283 creator A5003547177 @default.
- W2413502283 creator A5006738993 @default.
- W2413502283 creator A5015017082 @default.
- W2413502283 creator A5024194480 @default.
- W2413502283 creator A5030950854 @default.
- W2413502283 creator A5031359294 @default.
- W2413502283 creator A5050558613 @default.
- W2413502283 creator A5053676331 @default.
- W2413502283 creator A5062931550 @default.
- W2413502283 date "2016-01-25" @default.
- W2413502283 modified "2023-10-18" @default.
- W2413502283 title "Network-Based Meta-Analyses of Associations of Multiple Gene Expression Profiles with Bone Mineral Density Variations in Women" @default.
- W2413502283 cites W1499561015 @default.
- W2413502283 cites W1532865172 @default.
- W2413502283 cites W1545561369 @default.
- W2413502283 cites W1964891491 @default.
- W2413502283 cites W1975490391 @default.
- W2413502283 cites W1982684047 @default.
- W2413502283 cites W1983966364 @default.
- W2413502283 cites W1994803330 @default.
- W2413502283 cites W1998222399 @default.
- W2413502283 cites W1998712640 @default.
- W2413502283 cites W2000647744 @default.
- W2413502283 cites W2009170866 @default.
- W2413502283 cites W2018602999 @default.
- W2413502283 cites W2021427813 @default.
- W2413502283 cites W2024932182 @default.
- W2413502283 cites W2038050797 @default.
- W2413502283 cites W2064016072 @default.
- W2413502283 cites W2064294766 @default.
- W2413502283 cites W2065766094 @default.
- W2413502283 cites W2083045667 @default.
- W2413502283 cites W2083871437 @default.
- W2413502283 cites W2093147348 @default.
- W2413502283 cites W2097237683 @default.
- W2413502283 cites W2100743480 @default.
- W2413502283 cites W2101181377 @default.
- W2413502283 cites W2104843251 @default.
- W2413502283 cites W2112811019 @default.
- W2413502283 cites W2114344041 @default.
- W2413502283 cites W2116634113 @default.
- W2413502283 cites W2119857277 @default.
- W2413502283 cites W2122935607 @default.
- W2413502283 cites W2123180563 @default.
- W2413502283 cites W2123346255 @default.
- W2413502283 cites W2125083915 @default.
- W2413502283 cites W2128361433 @default.
- W2413502283 cites W2129075946 @default.
- W2413502283 cites W2136371643 @default.
- W2413502283 cites W2152155643 @default.
- W2413502283 cites W2153032620 @default.
- W2413502283 cites W2154981570 @default.
- W2413502283 cites W2156098321 @default.
- W2413502283 cites W2157795344 @default.
- W2413502283 cites W2157840751 @default.
- W2413502283 cites W2164683872 @default.
- W2413502283 cites W2165439432 @default.
- W2413502283 cites W2170372671 @default.
- W2413502283 cites W2170520557 @default.
- W2413502283 cites W2171662214 @default.
- W2413502283 cites W246286872 @default.
- W2413502283 cites W2741640680 @default.
- W2413502283 cites W4294107304 @default.
- W2413502283 cites W4294215472 @default.
- W2413502283 doi "https://doi.org/10.1371/journal.pone.0147475" @default.
- W2413502283 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4726665" @default.
- W2413502283 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26808152" @default.
- W2413502283 hasPublicationYear "2016" @default.
- W2413502283 type Work @default.
- W2413502283 sameAs 2413502283 @default.
- W2413502283 citedByCount "11" @default.
- W2413502283 countsByYear W24135022832016 @default.
- W2413502283 countsByYear W24135022832017 @default.
- W2413502283 countsByYear W24135022832018 @default.
- W2413502283 countsByYear W24135022832019 @default.
- W2413502283 countsByYear W24135022832020 @default.
- W2413502283 countsByYear W24135022832023 @default.
- W2413502283 crossrefType "journal-article" @default.
- W2413502283 hasAuthorship W2413502283A5003547177 @default.
- W2413502283 hasAuthorship W2413502283A5006738993 @default.
- W2413502283 hasAuthorship W2413502283A5015017082 @default.
- W2413502283 hasAuthorship W2413502283A5024194480 @default.
- W2413502283 hasAuthorship W2413502283A5030950854 @default.
- W2413502283 hasAuthorship W2413502283A5031359294 @default.
- W2413502283 hasAuthorship W2413502283A5050558613 @default.
- W2413502283 hasAuthorship W2413502283A5053676331 @default.
- W2413502283 hasAuthorship W2413502283A5062931550 @default.
- W2413502283 hasBestOaLocation W24135022831 @default.
- W2413502283 hasConcept C104317684 @default.
- W2413502283 hasConcept C105795698 @default.
- W2413502283 hasConcept C126322002 @default.
- W2413502283 hasConcept C150194340 @default.
- W2413502283 hasConcept C183905921 @default.
- W2413502283 hasConcept C18431079 @default.
- W2413502283 hasConcept C186836561 @default.
- W2413502283 hasConcept C193244246 @default.
- W2413502283 hasConcept C33923547 @default.
- W2413502283 hasConcept C54355233 @default.