Matches in SemOpenAlex for { <https://semopenalex.org/work/W2413830464> ?p ?o ?g. }
- W2413830464 endingPage "179" @default.
- W2413830464 startingPage "163" @default.
- W2413830464 abstract "High-enthalpy geothermal systems, such as that of Rotokawa in the central Taupo Volcanic Zone (TVZ) of New Zealand, commonly host fracture systems that control reservoir permeability. The loss of porosity and permeability through compaction and mineral precipitation, and the opening of permeable fracture zones, occurred in tandem as the geothermal system evolved. In order to better understand how porosity can evolve in an active reservoir, a systematic study of triaxial deformation experiments has been undertaken to investigate the mechanical behaviour and failure mode of coherent andesite lavas and andesite breccias (the predominant reservoir lithologies) with varying porosity and alteration intensity from the Rotokawa Geothermal Field under high confining pressure and high pore fluid pressure conditions. These experiments provide insight into the formation of permeable fracture zones and low-permeability zones within the reservoir. Although we observed brittle failure mode in all our experiments (covering a range of rock attributes and relevant pressure conditions), we find that the amount of dilatancy during deformation, inferred to assist in the creation of a permeable network, is considerably reduced at high effective pressures and for high-porosity and highly altered samples. Importantly, some high-porosity and/or highly altered samples experienced a net compaction at the end of the experiments. Microstructural observations suggest that, although the failure mode remains ultimately brittle, microcracking and pore collapse can operate in concert at high effective pressure, porosity, and/or alteration, potentially explaining the reduction in dilatancy. We infer, therefore, that the deformation of the rocks within the reservoir could result in either a bulk permeability increase or a permeability decrease, depending on the physical characteristics of the rocks (e.g. porosity and alteration intensity) and the pressure conditions. Using our new experimental data we provide a Hoek-Brown failure criterion for an intact Rotokawa andesite with a representative porosity and show the distribution of stresses around a vertical and deviated borehole during drilling using a finite element model. Finite element modelling shows that brittle failure of intact rock (and therefore off-fault seismicity) during production and injection is unlikely in RKA containing the average porosity assumed for the reservoir. Production-induced compaction and injection-induced tensile failure could occur however in high-porosity and/or highly altered intact rock (which could lead to instability at the well boundary), particularly in deviated wells. The experiments and modelling presented herein provide insight into the evolution of an actively utilised geothermal reservoir." @default.
- W2413830464 created "2016-06-24" @default.
- W2413830464 creator A5008331980 @default.
- W2413830464 creator A5017421238 @default.
- W2413830464 creator A5028094688 @default.
- W2413830464 creator A5033729554 @default.
- W2413830464 creator A5050950154 @default.
- W2413830464 creator A5089060228 @default.
- W2413830464 creator A5089375247 @default.
- W2413830464 date "2016-11-01" @default.
- W2413830464 modified "2023-10-10" @default.
- W2413830464 title "Mechanical behaviour of the Rotokawa Andesites (New Zealand): Insight into permeability evolution and stress-induced behaviour in an actively utilised geothermal reservoir" @default.
- W2413830464 cites W1586622287 @default.
- W2413830464 cites W1872330980 @default.
- W2413830464 cites W1875469468 @default.
- W2413830464 cites W1953820895 @default.
- W2413830464 cites W1969201000 @default.
- W2413830464 cites W1971628527 @default.
- W2413830464 cites W1972622698 @default.
- W2413830464 cites W1975633231 @default.
- W2413830464 cites W1984717070 @default.
- W2413830464 cites W1987512596 @default.
- W2413830464 cites W1988378978 @default.
- W2413830464 cites W1991463636 @default.
- W2413830464 cites W1995809323 @default.
- W2413830464 cites W1999896950 @default.
- W2413830464 cites W2001680486 @default.
- W2413830464 cites W2002471365 @default.
- W2413830464 cites W2017549152 @default.
- W2413830464 cites W2019327795 @default.
- W2413830464 cites W2022766975 @default.
- W2413830464 cites W2026203425 @default.
- W2413830464 cites W2029616746 @default.
- W2413830464 cites W2029938083 @default.
- W2413830464 cites W2029998646 @default.
- W2413830464 cites W2035482330 @default.
- W2413830464 cites W2036221151 @default.
- W2413830464 cites W2037663517 @default.
- W2413830464 cites W2038405013 @default.
- W2413830464 cites W2039243501 @default.
- W2413830464 cites W2044368181 @default.
- W2413830464 cites W2044447886 @default.
- W2413830464 cites W2044686992 @default.
- W2413830464 cites W2048628678 @default.
- W2413830464 cites W2050425513 @default.
- W2413830464 cites W2050711690 @default.
- W2413830464 cites W2051218756 @default.
- W2413830464 cites W2052485131 @default.
- W2413830464 cites W2058871289 @default.
- W2413830464 cites W2060471784 @default.
- W2413830464 cites W2062371359 @default.
- W2413830464 cites W2064161173 @default.
- W2413830464 cites W2068208294 @default.
- W2413830464 cites W2069976914 @default.
- W2413830464 cites W2073185922 @default.
- W2413830464 cites W2073231907 @default.
- W2413830464 cites W2075967152 @default.
- W2413830464 cites W2077167599 @default.
- W2413830464 cites W2083684835 @default.
- W2413830464 cites W2090776051 @default.
- W2413830464 cites W2102114010 @default.
- W2413830464 cites W2105092475 @default.
- W2413830464 cites W2105735786 @default.
- W2413830464 cites W2109195131 @default.
- W2413830464 cites W2115481049 @default.
- W2413830464 cites W2130409464 @default.
- W2413830464 cites W2131889236 @default.
- W2413830464 cites W2165569819 @default.
- W2413830464 cites W2176385875 @default.
- W2413830464 cites W2197943567 @default.
- W2413830464 cites W2286210791 @default.
- W2413830464 cites W2395686080 @default.
- W2413830464 cites W258311243 @default.
- W2413830464 cites W3042354277 @default.
- W2413830464 cites W4230216479 @default.
- W2413830464 doi "https://doi.org/10.1016/j.geothermics.2016.05.005" @default.
- W2413830464 hasPublicationYear "2016" @default.
- W2413830464 type Work @default.
- W2413830464 sameAs 2413830464 @default.
- W2413830464 citedByCount "56" @default.
- W2413830464 countsByYear W24138304642016 @default.
- W2413830464 countsByYear W24138304642017 @default.
- W2413830464 countsByYear W24138304642018 @default.
- W2413830464 countsByYear W24138304642019 @default.
- W2413830464 countsByYear W24138304642020 @default.
- W2413830464 countsByYear W24138304642021 @default.
- W2413830464 countsByYear W24138304642022 @default.
- W2413830464 countsByYear W24138304642023 @default.
- W2413830464 crossrefType "journal-article" @default.
- W2413830464 hasAuthorship W2413830464A5008331980 @default.
- W2413830464 hasAuthorship W2413830464A5017421238 @default.
- W2413830464 hasAuthorship W2413830464A5028094688 @default.
- W2413830464 hasAuthorship W2413830464A5033729554 @default.
- W2413830464 hasAuthorship W2413830464A5050950154 @default.
- W2413830464 hasAuthorship W2413830464A5089060228 @default.
- W2413830464 hasAuthorship W2413830464A5089375247 @default.
- W2413830464 hasConcept C102579867 @default.
- W2413830464 hasConcept C111766609 @default.