Matches in SemOpenAlex for { <https://semopenalex.org/work/W2414232284> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2414232284 abstract "If a graph has $nge4k$ vertices and more than $n^2/4$ edges, then it contains a copy of $C_{2k+1}$. In 1992, ErdH{o}s, Faudree and Rousseau showed even more, that the number of edges that occur in a triangle is at least $2lfloor n/2rfloor+1$, and this bound is tight. They also showed that the minimum number of edges that occur in a $C_{2k+1}$ for $kge2$ is at least $11n^2/144-O(n)$, and conjectured that for any $kge2$, the correct lower bound should be $2n^2/9-O(n)$. Very recently, Furedi and Maleki constructed a counterexample for $k=2$ and proved asymptotically matching lower bound, namely that for any $varepsilon>0$ graphs with $(1+varepsilon)n^2/4$ edges contain at least $(2+sqrt{2})n^2/16 approx 0.2134n^2$ edges that occur in $C_5$. In this paper, we use a different approach to tackle this problem and obtain the following stronger result: Any $n$-vertex graph with at least $lfloor n^2/4rfloor+1$ edges has at least $(2+sqrt{2})n^2/16-O(n^{15/8})$ edges that occur in $C_5$. Next, for all $kge 3$ and $n$ sufficiently large, we determine the exact minimum number of edges that occur in $C_{2k+1}$ for $n$-vertex graphs with more than $n^2/4$ edges, and show it is indeed equal to $lfloorfrac{n^2}4rfloor+1-lfloorfrac{n+4}6rfloorlfloorfrac{n+1}6rfloor=2n^2/9-O(n)$. For both results, we give a structural description of the extremal configurations as well as obtain the corresponding stability results, which answer a conjecture of Furedi and Maleki. The main ingredient is a novel approach that combines the flag algebras together with ideas from finite forcibility of graph limits. This approach allowed us to keep track of the extra edge needed to guarantee an existence of a $C_{2k+1}$. Also, we establish the first application of semidefinite method in a setting, where the set of tight examples has exponential size, and arises from different constructions." @default.
- W2414232284 created "2016-06-24" @default.
- W2414232284 creator A5034742583 @default.
- W2414232284 creator A5058456428 @default.
- W2414232284 creator A5082781996 @default.
- W2414232284 date "2016-05-29" @default.
- W2414232284 modified "2023-09-27" @default.
- W2414232284 title "Minimum number of edges that occur in odd cycles" @default.
- W2414232284 cites W1510730180 @default.
- W2414232284 cites W1543148594 @default.
- W2414232284 cites W1919563699 @default.
- W2414232284 cites W1932085276 @default.
- W2414232284 cites W1990277711 @default.
- W2414232284 cites W2011575706 @default.
- W2414232284 cites W2013425391 @default.
- W2414232284 cites W2044216784 @default.
- W2414232284 cites W2096807443 @default.
- W2414232284 cites W2099921939 @default.
- W2414232284 cites W2102204848 @default.
- W2414232284 cites W2105222637 @default.
- W2414232284 cites W2110354774 @default.
- W2414232284 cites W2112317227 @default.
- W2414232284 cites W2115609426 @default.
- W2414232284 cites W2137250886 @default.
- W2414232284 cites W2148944064 @default.
- W2414232284 cites W2161915731 @default.
- W2414232284 cites W2165707420 @default.
- W2414232284 cites W2166750439 @default.
- W2414232284 cites W2168244850 @default.
- W2414232284 cites W2172050371 @default.
- W2414232284 cites W2346941606 @default.
- W2414232284 cites W2591779083 @default.
- W2414232284 cites W2611415465 @default.
- W2414232284 cites W2964343392 @default.
- W2414232284 cites W92974736 @default.
- W2414232284 hasPublicationYear "2016" @default.
- W2414232284 type Work @default.
- W2414232284 sameAs 2414232284 @default.
- W2414232284 citedByCount "1" @default.
- W2414232284 countsByYear W24142322842017 @default.
- W2414232284 crossrefType "posted-content" @default.
- W2414232284 hasAuthorship W2414232284A5034742583 @default.
- W2414232284 hasAuthorship W2414232284A5058456428 @default.
- W2414232284 hasAuthorship W2414232284A5082781996 @default.
- W2414232284 hasConcept C105795698 @default.
- W2414232284 hasConcept C114614502 @default.
- W2414232284 hasConcept C118615104 @default.
- W2414232284 hasConcept C132525143 @default.
- W2414232284 hasConcept C134306372 @default.
- W2414232284 hasConcept C162838799 @default.
- W2414232284 hasConcept C165064840 @default.
- W2414232284 hasConcept C33923547 @default.
- W2414232284 hasConcept C77553402 @default.
- W2414232284 hasConcept C80899671 @default.
- W2414232284 hasConceptScore W2414232284C105795698 @default.
- W2414232284 hasConceptScore W2414232284C114614502 @default.
- W2414232284 hasConceptScore W2414232284C118615104 @default.
- W2414232284 hasConceptScore W2414232284C132525143 @default.
- W2414232284 hasConceptScore W2414232284C134306372 @default.
- W2414232284 hasConceptScore W2414232284C162838799 @default.
- W2414232284 hasConceptScore W2414232284C165064840 @default.
- W2414232284 hasConceptScore W2414232284C33923547 @default.
- W2414232284 hasConceptScore W2414232284C77553402 @default.
- W2414232284 hasConceptScore W2414232284C80899671 @default.
- W2414232284 hasLocation W24142322841 @default.
- W2414232284 hasOpenAccess W2414232284 @default.
- W2414232284 hasPrimaryLocation W24142322841 @default.
- W2414232284 hasRelatedWork W1959141466 @default.
- W2414232284 hasRelatedWork W1968462015 @default.
- W2414232284 hasRelatedWork W2004634617 @default.
- W2414232284 hasRelatedWork W2031135338 @default.
- W2414232284 hasRelatedWork W2155295887 @default.
- W2414232284 hasRelatedWork W2737954327 @default.
- W2414232284 hasRelatedWork W2913492813 @default.
- W2414232284 hasRelatedWork W2949196049 @default.
- W2414232284 hasRelatedWork W2949308151 @default.
- W2414232284 hasRelatedWork W2952780231 @default.
- W2414232284 hasRelatedWork W2953057121 @default.
- W2414232284 hasRelatedWork W2955940918 @default.
- W2414232284 hasRelatedWork W2963040959 @default.
- W2414232284 hasRelatedWork W2971004196 @default.
- W2414232284 hasRelatedWork W2972631639 @default.
- W2414232284 hasRelatedWork W2990155102 @default.
- W2414232284 hasRelatedWork W2996688655 @default.
- W2414232284 hasRelatedWork W3109513833 @default.
- W2414232284 hasRelatedWork W3188445893 @default.
- W2414232284 hasRelatedWork W3196968457 @default.
- W2414232284 isParatext "false" @default.
- W2414232284 isRetracted "false" @default.
- W2414232284 magId "2414232284" @default.
- W2414232284 workType "article" @default.