Matches in SemOpenAlex for { <https://semopenalex.org/work/W2414461030> ?p ?o ?g. }
- W2414461030 endingPage "969" @default.
- W2414461030 startingPage "936" @default.
- W2414461030 abstract "In this paper, the element-free Galerkin (EFG) meshless method and moving Kriging collocation meshless technique are applied for finding the numerical solution of a class of two-dimensional (2D) nonlinear time fractional partial differential equations. The Klein–Gordon, sine-Gordon, diffusion wave and Cattaneo equations with Neumann boundary condition are studied. The time fractional derivative has been described in the Caputo’s sense. Firstly, we use a semi-implicit finite difference scheme of convergence order , and then for obtaining a full discrete scheme, the space derivative is discretized with the EFG and moving Kriging collocation techniques. The EFG method uses a weak form of the considered equation that is similar to the finite element method with the difference that in the EFG method, test and trial functions are moving least squares approximation (MLS) shape functions. Also, in the element-free Galekin method, we do not use any triangular, quadrangular, or other types of meshes. The EFG method is a global method while finite element method is a local one. The EFG method is not a truly meshless method and for integration uses a background mesh. We prove the unconditional stability and obtain an error bound for the EFG method using the energy method. Numerical examples are reported which support the theoretical results and the efficiency of the proposed scheme." @default.
- W2414461030 created "2016-06-24" @default.
- W2414461030 creator A5044309986 @default.
- W2414461030 creator A5051159072 @default.
- W2414461030 date "2016-04-04" @default.
- W2414461030 modified "2023-09-23" @default.
- W2414461030 title "Two meshless procedures: moving Kriging interpolation and element-free Galerkin for fractional PDEs" @default.
- W2414461030 cites W1489714916 @default.
- W2414461030 cites W1524814552 @default.
- W2414461030 cites W1623557273 @default.
- W2414461030 cites W1781514238 @default.
- W2414461030 cites W181700626 @default.
- W2414461030 cites W1965266992 @default.
- W2414461030 cites W1965632584 @default.
- W2414461030 cites W1967288979 @default.
- W2414461030 cites W1968779197 @default.
- W2414461030 cites W1969312973 @default.
- W2414461030 cites W1975383112 @default.
- W2414461030 cites W1975670568 @default.
- W2414461030 cites W1975745919 @default.
- W2414461030 cites W1976371327 @default.
- W2414461030 cites W1976571953 @default.
- W2414461030 cites W1977360274 @default.
- W2414461030 cites W1979227627 @default.
- W2414461030 cites W1981956153 @default.
- W2414461030 cites W1983159263 @default.
- W2414461030 cites W1984091802 @default.
- W2414461030 cites W1988744163 @default.
- W2414461030 cites W1990829983 @default.
- W2414461030 cites W1995597760 @default.
- W2414461030 cites W1996761814 @default.
- W2414461030 cites W2003202721 @default.
- W2414461030 cites W2003679356 @default.
- W2414461030 cites W2006338052 @default.
- W2414461030 cites W2006651286 @default.
- W2414461030 cites W2009435136 @default.
- W2414461030 cites W2009548753 @default.
- W2414461030 cites W2013344519 @default.
- W2414461030 cites W2014666630 @default.
- W2414461030 cites W2017288915 @default.
- W2414461030 cites W2024093795 @default.
- W2414461030 cites W2031171824 @default.
- W2414461030 cites W2031835838 @default.
- W2414461030 cites W2032495860 @default.
- W2414461030 cites W2033593438 @default.
- W2414461030 cites W2034221093 @default.
- W2414461030 cites W2039427414 @default.
- W2414461030 cites W2042535847 @default.
- W2414461030 cites W2042640524 @default.
- W2414461030 cites W2043080303 @default.
- W2414461030 cites W2045231411 @default.
- W2414461030 cites W2047229112 @default.
- W2414461030 cites W2047594597 @default.
- W2414461030 cites W2048909372 @default.
- W2414461030 cites W2049783130 @default.
- W2414461030 cites W2052129902 @default.
- W2414461030 cites W2055701161 @default.
- W2414461030 cites W2056107846 @default.
- W2414461030 cites W2056935789 @default.
- W2414461030 cites W2057265674 @default.
- W2414461030 cites W2059042028 @default.
- W2414461030 cites W2059607966 @default.
- W2414461030 cites W2062266804 @default.
- W2414461030 cites W2062807261 @default.
- W2414461030 cites W2063780366 @default.
- W2414461030 cites W2066200077 @default.
- W2414461030 cites W2066693071 @default.
- W2414461030 cites W2067855936 @default.
- W2414461030 cites W2069346338 @default.
- W2414461030 cites W2080798379 @default.
- W2414461030 cites W2080968030 @default.
- W2414461030 cites W2081272416 @default.
- W2414461030 cites W2083046996 @default.
- W2414461030 cites W2084024141 @default.
- W2414461030 cites W2085110512 @default.
- W2414461030 cites W2090231693 @default.
- W2414461030 cites W2092481138 @default.
- W2414461030 cites W2092718516 @default.
- W2414461030 cites W2092912961 @default.
- W2414461030 cites W2093474801 @default.
- W2414461030 cites W2095539480 @default.
- W2414461030 cites W2101121254 @default.
- W2414461030 cites W2101461245 @default.
- W2414461030 cites W2103424436 @default.
- W2414461030 cites W2104575663 @default.
- W2414461030 cites W2106704185 @default.
- W2414461030 cites W2118816806 @default.
- W2414461030 cites W2119838320 @default.
- W2414461030 cites W2130620182 @default.
- W2414461030 cites W2142136198 @default.
- W2414461030 cites W2142803207 @default.
- W2414461030 cites W2282781400 @default.
- W2414461030 cites W2325398800 @default.
- W2414461030 cites W3101361006 @default.
- W2414461030 doi "https://doi.org/10.1080/00036811.2016.1167879" @default.
- W2414461030 hasPublicationYear "2016" @default.
- W2414461030 type Work @default.
- W2414461030 sameAs 2414461030 @default.