Matches in SemOpenAlex for { <https://semopenalex.org/work/W2415447328> ?p ?o ?g. }
- W2415447328 endingPage "1369" @default.
- W2415447328 startingPage "1356" @default.
- W2415447328 abstract "In recent years, sparse coding has been widely used in many applications ranging from image processing to pattern recognition. Most existing sparse coding based applications require solving a class of challenging non-smooth and non-convex optimization problems. Despite the fact that many numerical methods have been developed for solving these problems, it remains an open problem to find a numerical method which is not only empirically fast, but also has mathematically guaranteed strong convergence. In this paper, we propose an alternating iteration scheme for solving such problems. A rigorous convergence analysis shows that the proposed method satisfies the global convergence property: the whole sequence of iterates is convergent and converges to a critical point. Besides the theoretical soundness, the practical benefit of the proposed method is validated in applications including image restoration and recognition. Experiments show that the proposed method achieves similar results with less computation when compared to widely used methods such as K-SVD." @default.
- W2415447328 created "2016-06-24" @default.
- W2415447328 creator A5030046423 @default.
- W2415447328 creator A5038130835 @default.
- W2415447328 creator A5054041500 @default.
- W2415447328 creator A5068391881 @default.
- W2415447328 date "2016-07-01" @default.
- W2415447328 modified "2023-10-03" @default.
- W2415447328 title "Dictionary Learning for Sparse Coding: Algorithms and Convergence Analysis" @default.
- W2415447328 cites W1590407118 @default.
- W2415447328 cites W1890834058 @default.
- W2415447328 cites W1965125844 @default.
- W2415447328 cites W1967138577 @default.
- W2415447328 cites W1968154520 @default.
- W2415447328 cites W1979089199 @default.
- W2415447328 cites W1986931325 @default.
- W2415447328 cites W1992405901 @default.
- W2415447328 cites W2020222100 @default.
- W2415447328 cites W2027805700 @default.
- W2415447328 cites W2027982384 @default.
- W2415447328 cites W2063978378 @default.
- W2415447328 cites W2069390315 @default.
- W2415447328 cites W2074682976 @default.
- W2415447328 cites W2082639035 @default.
- W2415447328 cites W2085692415 @default.
- W2415447328 cites W2090963365 @default.
- W2415447328 cites W2100556411 @default.
- W2415447328 cites W2114083954 @default.
- W2415447328 cites W2114122776 @default.
- W2415447328 cites W2116148865 @default.
- W2415447328 cites W2123921160 @default.
- W2415447328 cites W2129732816 @default.
- W2415447328 cites W2153663612 @default.
- W2415447328 cites W2160547390 @default.
- W2415447328 cites W2162915993 @default.
- W2415447328 cites W2166049352 @default.
- W2415447328 cites W2166790554 @default.
- W2415447328 cites W2536599074 @default.
- W2415447328 cites W4249513058 @default.
- W2415447328 doi "https://doi.org/10.1109/tpami.2015.2487966" @default.
- W2415447328 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26452248" @default.
- W2415447328 hasPublicationYear "2016" @default.
- W2415447328 type Work @default.
- W2415447328 sameAs 2415447328 @default.
- W2415447328 citedByCount "156" @default.
- W2415447328 countsByYear W24154473282016 @default.
- W2415447328 countsByYear W24154473282017 @default.
- W2415447328 countsByYear W24154473282018 @default.
- W2415447328 countsByYear W24154473282019 @default.
- W2415447328 countsByYear W24154473282020 @default.
- W2415447328 countsByYear W24154473282021 @default.
- W2415447328 countsByYear W24154473282022 @default.
- W2415447328 countsByYear W24154473282023 @default.
- W2415447328 crossrefType "journal-article" @default.
- W2415447328 hasAuthorship W2415447328A5030046423 @default.
- W2415447328 hasAuthorship W2415447328A5038130835 @default.
- W2415447328 hasAuthorship W2415447328A5054041500 @default.
- W2415447328 hasAuthorship W2415447328A5068391881 @default.
- W2415447328 hasConcept C105795698 @default.
- W2415447328 hasConcept C112680207 @default.
- W2415447328 hasConcept C11413529 @default.
- W2415447328 hasConcept C121332964 @default.
- W2415447328 hasConcept C124066611 @default.
- W2415447328 hasConcept C126255220 @default.
- W2415447328 hasConcept C134306372 @default.
- W2415447328 hasConcept C140479938 @default.
- W2415447328 hasConcept C154945302 @default.
- W2415447328 hasConcept C157972887 @default.
- W2415447328 hasConcept C162324750 @default.
- W2415447328 hasConcept C163716315 @default.
- W2415447328 hasConcept C179518139 @default.
- W2415447328 hasConcept C2524010 @default.
- W2415447328 hasConcept C2777303404 @default.
- W2415447328 hasConcept C33923547 @default.
- W2415447328 hasConcept C41008148 @default.
- W2415447328 hasConcept C50522688 @default.
- W2415447328 hasConcept C56372850 @default.
- W2415447328 hasConcept C62520636 @default.
- W2415447328 hasConcept C77637269 @default.
- W2415447328 hasConceptScore W2415447328C105795698 @default.
- W2415447328 hasConceptScore W2415447328C112680207 @default.
- W2415447328 hasConceptScore W2415447328C11413529 @default.
- W2415447328 hasConceptScore W2415447328C121332964 @default.
- W2415447328 hasConceptScore W2415447328C124066611 @default.
- W2415447328 hasConceptScore W2415447328C126255220 @default.
- W2415447328 hasConceptScore W2415447328C134306372 @default.
- W2415447328 hasConceptScore W2415447328C140479938 @default.
- W2415447328 hasConceptScore W2415447328C154945302 @default.
- W2415447328 hasConceptScore W2415447328C157972887 @default.
- W2415447328 hasConceptScore W2415447328C162324750 @default.
- W2415447328 hasConceptScore W2415447328C163716315 @default.
- W2415447328 hasConceptScore W2415447328C179518139 @default.
- W2415447328 hasConceptScore W2415447328C2524010 @default.
- W2415447328 hasConceptScore W2415447328C2777303404 @default.
- W2415447328 hasConceptScore W2415447328C33923547 @default.
- W2415447328 hasConceptScore W2415447328C41008148 @default.
- W2415447328 hasConceptScore W2415447328C50522688 @default.
- W2415447328 hasConceptScore W2415447328C56372850 @default.