Matches in SemOpenAlex for { <https://semopenalex.org/work/W2415721549> ?p ?o ?g. }
- W2415721549 endingPage "1077" @default.
- W2415721549 startingPage "1062" @default.
- W2415721549 abstract "This paper considers two classes of large population stochastic differential games connected to optimal and robust decentralized control of large-scale multiagent systems. The first problem ( P1 ) is one where each agent minimizes an exponentiated cost function, capturing risk-sensitive behavior, whereas in the second problem ( P2 ) each agent minimizes a worst-case risk-neutral cost function, where the “worst case” stems from the presence of an adversary entering each agent’s dynamics characterized by a stochastic differential equation. In both problems, the individual agents are coupled through the mean field term included in each agent’s cost function, which captures the average or mass behavior of the agents. We solve both P1 and P2 via mean field game theory. Specifically, we first solve a generic risk-sensitive optimal control problem and a generic stochastic zero-sum differential game, where the corresponding optimal controllers are applied by each agent to construct the mean field systems of P1 and P2 . We then characterize an approximated mass behavior effect on an individual agent via a fixed-point analysis of the mean field system. For each problem, P1 and P2 , we show that the approximated mass behavior is in fact the best estimate of the actual mass behavior in various senses as the population size, $N$ , goes to infinity. Moreover, we show that for finite $N$ , there exist $epsilon$ - Nash equilibria for both P1 and P2 , where the corresponding individual Nash strategies are decentralized in terms of local state information and the approximated mass behavior. We also show that $epsilon$ can be taken to be arbitrarily small when $N$ is sufficiently large. We show that the $epsilon$ - Nash equilibria of P1 and P2 are partially equivalent in the sense that the individual Nash strategies share identical control laws, but the approximated mass behaviors for P1 and P2 are different, since in P2 , the mass behavior is also affected by the associated worst-case disturbance. Finally, we prove that the Nash equilibria for P1 and P2 both feature robustness, and as the parameter characterizing this robustness becomes infinite, the two Nash equilibria become identical and equivalent to that of the risk-neutral case, as in the one-agent risk-sensitive and robust control theory." @default.
- W2415721549 created "2016-06-24" @default.
- W2415721549 creator A5019604570 @default.
- W2415721549 creator A5032721534 @default.
- W2415721549 date "2017-03-01" @default.
- W2415721549 modified "2023-09-23" @default.
- W2415721549 title "Linear Quadratic Risk-Sensitive and Robust Mean Field Games" @default.
- W2415721549 cites W1577514385 @default.
- W2415721549 cites W1821455959 @default.
- W2415721549 cites W1946156631 @default.
- W2415721549 cites W1983321045 @default.
- W2415721549 cites W1983997656 @default.
- W2415721549 cites W1985673074 @default.
- W2415721549 cites W1986431940 @default.
- W2415721549 cites W1992169727 @default.
- W2415721549 cites W2004264786 @default.
- W2415721549 cites W2014460387 @default.
- W2415721549 cites W2015553626 @default.
- W2415721549 cites W2015557139 @default.
- W2415721549 cites W2018708768 @default.
- W2415721549 cites W2022460928 @default.
- W2415721549 cites W2038686546 @default.
- W2415721549 cites W2060921867 @default.
- W2415721549 cites W2088077079 @default.
- W2415721549 cites W2095823527 @default.
- W2415721549 cites W2096035449 @default.
- W2415721549 cites W2097730910 @default.
- W2415721549 cites W2107555698 @default.
- W2415721549 cites W2112198148 @default.
- W2415721549 cites W2115684267 @default.
- W2415721549 cites W2129951390 @default.
- W2415721549 cites W2132511141 @default.
- W2415721549 cites W2136776938 @default.
- W2415721549 cites W2140821023 @default.
- W2415721549 cites W2178177313 @default.
- W2415721549 cites W2178442254 @default.
- W2415721549 cites W2211095476 @default.
- W2415721549 cites W2219809504 @default.
- W2415721549 cites W2291103294 @default.
- W2415721549 cites W2964128536 @default.
- W2415721549 cites W3021521355 @default.
- W2415721549 cites W4230510522 @default.
- W2415721549 cites W4254362479 @default.
- W2415721549 cites W4297852499 @default.
- W2415721549 doi "https://doi.org/10.1109/tac.2016.2579264" @default.
- W2415721549 hasPublicationYear "2017" @default.
- W2415721549 type Work @default.
- W2415721549 sameAs 2415721549 @default.
- W2415721549 citedByCount "96" @default.
- W2415721549 countsByYear W24157215492015 @default.
- W2415721549 countsByYear W24157215492017 @default.
- W2415721549 countsByYear W24157215492018 @default.
- W2415721549 countsByYear W24157215492019 @default.
- W2415721549 countsByYear W24157215492020 @default.
- W2415721549 countsByYear W24157215492021 @default.
- W2415721549 countsByYear W24157215492022 @default.
- W2415721549 countsByYear W24157215492023 @default.
- W2415721549 crossrefType "journal-article" @default.
- W2415721549 hasAuthorship W2415721549A5019604570 @default.
- W2415721549 hasAuthorship W2415721549A5032721534 @default.
- W2415721549 hasConcept C134306372 @default.
- W2415721549 hasConcept C154945302 @default.
- W2415721549 hasConcept C202444582 @default.
- W2415721549 hasConcept C2775924081 @default.
- W2415721549 hasConcept C28826006 @default.
- W2415721549 hasConcept C33923547 @default.
- W2415721549 hasConcept C41008148 @default.
- W2415721549 hasConcept C47446073 @default.
- W2415721549 hasConcept C6802819 @default.
- W2415721549 hasConcept C9652623 @default.
- W2415721549 hasConceptScore W2415721549C134306372 @default.
- W2415721549 hasConceptScore W2415721549C154945302 @default.
- W2415721549 hasConceptScore W2415721549C202444582 @default.
- W2415721549 hasConceptScore W2415721549C2775924081 @default.
- W2415721549 hasConceptScore W2415721549C28826006 @default.
- W2415721549 hasConceptScore W2415721549C33923547 @default.
- W2415721549 hasConceptScore W2415721549C41008148 @default.
- W2415721549 hasConceptScore W2415721549C47446073 @default.
- W2415721549 hasConceptScore W2415721549C6802819 @default.
- W2415721549 hasConceptScore W2415721549C9652623 @default.
- W2415721549 hasFunder F4320338279 @default.
- W2415721549 hasIssue "3" @default.
- W2415721549 hasLocation W24157215491 @default.
- W2415721549 hasOpenAccess W2415721549 @default.
- W2415721549 hasPrimaryLocation W24157215491 @default.
- W2415721549 hasRelatedWork W1514662352 @default.
- W2415721549 hasRelatedWork W1565599962 @default.
- W2415721549 hasRelatedWork W2032183060 @default.
- W2415721549 hasRelatedWork W2089811522 @default.
- W2415721549 hasRelatedWork W2351859806 @default.
- W2415721549 hasRelatedWork W2363925548 @default.
- W2415721549 hasRelatedWork W2366703348 @default.
- W2415721549 hasRelatedWork W2371931285 @default.
- W2415721549 hasRelatedWork W2386655577 @default.
- W2415721549 hasRelatedWork W4239376463 @default.
- W2415721549 hasVolume "62" @default.
- W2415721549 isParatext "false" @default.
- W2415721549 isRetracted "false" @default.