Matches in SemOpenAlex for { <https://semopenalex.org/work/W2415856871> ?p ?o ?g. }
- W2415856871 abstract "Rough set plays vital role to overcome the complexities, vagueness, uncertainty, imprecision, and incomplete data during features analysis. Classification is tested on certain dataset that maintain an exact class and review process where key attributes decide the class positions. To assess efficient and automated learning, algorithms are used over training datasets. Generally, classification is supervised learning whereas clustering is unsupervised. Classifications under mathematical models deal with mining rules and machine learning. The Objective of this work is to establish a strong theoretical and manual analysis among three popular classifier namely K-nearest neighbor (K-NN), Naive Bayes and Apriori algorithm. Hybridization with rough sets among these three classifiers enables enable to address larger datasets. Performances of three classifiers have tested in absence and presence of rough sets. This work is in the phase of implementation for DNA (Deoxyribonucleic Acid) datasets and it will design automated system to assess classifier under machine learning environment." @default.
- W2415856871 created "2016-06-24" @default.
- W2415856871 creator A5000975435 @default.
- W2415856871 creator A5005633740 @default.
- W2415856871 creator A5066104471 @default.
- W2415856871 creator A5086217459 @default.
- W2415856871 date "2016-07-01" @default.
- W2415856871 modified "2023-09-27" @default.
- W2415856871 title "Theoretical Analysis of Different Classifiers under Reduction Rough Data Set" @default.
- W2415856871 cites W1482456385 @default.
- W2415856871 cites W1483373027 @default.
- W2415856871 cites W1488103720 @default.
- W2415856871 cites W1568787085 @default.
- W2415856871 cites W1568886083 @default.
- W2415856871 cites W1604792744 @default.
- W2415856871 cites W175774416 @default.
- W2415856871 cites W1884356519 @default.
- W2415856871 cites W189027451 @default.
- W2415856871 cites W1912123407 @default.
- W2415856871 cites W1966728076 @default.
- W2415856871 cites W1967165005 @default.
- W2415856871 cites W1969148276 @default.
- W2415856871 cites W1970156673 @default.
- W2415856871 cites W1971403296 @default.
- W2415856871 cites W1997229044 @default.
- W2415856871 cites W2001692054 @default.
- W2415856871 cites W2002438422 @default.
- W2415856871 cites W2008266008 @default.
- W2415856871 cites W2035113275 @default.
- W2415856871 cites W2037053120 @default.
- W2415856871 cites W2037316073 @default.
- W2415856871 cites W2044885484 @default.
- W2415856871 cites W2056628610 @default.
- W2415856871 cites W2059747434 @default.
- W2415856871 cites W2070542280 @default.
- W2415856871 cites W2077006143 @default.
- W2415856871 cites W2081712429 @default.
- W2415856871 cites W2094613397 @default.
- W2415856871 cites W2094973863 @default.
- W2415856871 cites W2096352448 @default.
- W2415856871 cites W2110822809 @default.
- W2415856871 cites W2119343539 @default.
- W2415856871 cites W2120691184 @default.
- W2415856871 cites W2122765909 @default.
- W2415856871 cites W2130479394 @default.
- W2415856871 cites W2139208921 @default.
- W2415856871 cites W2142183404 @default.
- W2415856871 cites W2143451122 @default.
- W2415856871 cites W2148418595 @default.
- W2415856871 cites W2149943934 @default.
- W2415856871 cites W2151350595 @default.
- W2415856871 cites W2159548580 @default.
- W2415856871 cites W2160396543 @default.
- W2415856871 cites W2166559705 @default.
- W2415856871 cites W2169489281 @default.
- W2415856871 cites W2177120186 @default.
- W2415856871 cites W2184117268 @default.
- W2415856871 cites W2261241242 @default.
- W2415856871 cites W23362155 @default.
- W2415856871 cites W2354386094 @default.
- W2415856871 cites W2394435548 @default.
- W2415856871 cites W2564650018 @default.
- W2415856871 cites W2751237624 @default.
- W2415856871 cites W2997955816 @default.
- W2415856871 cites W3141039760 @default.
- W2415856871 cites W1882616152 @default.
- W2415856871 cites W2021378425 @default.
- W2415856871 cites W2566127739 @default.
- W2415856871 cites W2943294666 @default.
- W2415856871 doi "https://doi.org/10.4018/ijrsda.2016070101" @default.
- W2415856871 hasPublicationYear "2016" @default.
- W2415856871 type Work @default.
- W2415856871 sameAs 2415856871 @default.
- W2415856871 citedByCount "27" @default.
- W2415856871 countsByYear W24158568712017 @default.
- W2415856871 countsByYear W24158568712018 @default.
- W2415856871 countsByYear W24158568712019 @default.
- W2415856871 countsByYear W24158568712020 @default.
- W2415856871 countsByYear W24158568712022 @default.
- W2415856871 crossrefType "journal-article" @default.
- W2415856871 hasAuthorship W2415856871A5000975435 @default.
- W2415856871 hasAuthorship W2415856871A5005633740 @default.
- W2415856871 hasAuthorship W2415856871A5066104471 @default.
- W2415856871 hasAuthorship W2415856871A5086217459 @default.
- W2415856871 hasConcept C111012933 @default.
- W2415856871 hasConcept C111472728 @default.
- W2415856871 hasConcept C119857082 @default.
- W2415856871 hasConcept C12267149 @default.
- W2415856871 hasConcept C124101348 @default.
- W2415856871 hasConcept C138885662 @default.
- W2415856871 hasConcept C153180895 @default.
- W2415856871 hasConcept C154945302 @default.
- W2415856871 hasConcept C2776825360 @default.
- W2415856871 hasConcept C41008148 @default.
- W2415856871 hasConcept C52001869 @default.
- W2415856871 hasConcept C58166 @default.
- W2415856871 hasConcept C73555534 @default.
- W2415856871 hasConcept C75553542 @default.
- W2415856871 hasConcept C95623464 @default.
- W2415856871 hasConceptScore W2415856871C111012933 @default.