Matches in SemOpenAlex for { <https://semopenalex.org/work/W2416406362> ?p ?o ?g. }
- W2416406362 abstract "Object boundaries in images often exhibit a complex greylevel appearance, and modeling of that greylevel appearance is important in Bayesian segmentation. Traditional image match models such as gradient magnitude or static templates are insufficient to model complex and variable appearance at the object boundary; in the presence of image noise; jitter in correspondence, and variability in a population of objects. I present a new image match model for Bayesian segmentation that is statistical, multiscale, and uses a non-Euclidean object-intrinsic coordinate system. The segmentation framework is based on the spherical harmonics object representation and segmentation framework of Kelemen et al., which in turn uses the profile-based image match model of Active Shape Models. The traditional profile model does not take advantage of the expected high degree of correlation between adjacent profiles along the boundary. My new multiscale image match model uses a profile scale space, which blurs along the boundary but not across the boundary. This blurring is done not in Euclidean space but in an object-intrinsic coordinate system provided by the geometric representation of the object. Blurring is done on the sphere via a spherical harmonic decomposition; thus, spherical harmonics are used both in the geometric representation as well as the image profile representation. The profile scale space is sampled after the fashion of the Laplacian pyramid; the resulting tree of features is used to build a Markov Random Field probability distribution for Bayesian image match. Results are shown on a large dataset of 114 segmented caudates in T1-weighted magnetic resonance images (MRI). The image match model is evaluated on the basis of generalizability, specificity, and variance: it is compared against the traditional single scale profile model. The image match model is also evaluated in the context of a full segmentation framework, when optimized together with a shape prior. I test whether automatic segmentations using my multiscale profile model come closer to the manual expert segmentations than automatic segmentations using the single-scale profile model do. Results are compared against intra-rater and inter-rater reliability of manual segmentations." @default.
- W2416406362 created "2016-06-24" @default.
- W2416406362 creator A5010769610 @default.
- W2416406362 creator A5035290663 @default.
- W2416406362 date "2004-01-01" @default.
- W2416406362 modified "2023-09-26" @default.
- W2416406362 title "Profile scale spaces for statistical image match in bayesian segmentation" @default.
- W2416406362 cites W138224304 @default.
- W2416406362 cites W1495776837 @default.
- W2416406362 cites W1512148629 @default.
- W2416406362 cites W1564135739 @default.
- W2416406362 cites W1585749274 @default.
- W2416406362 cites W1590104494 @default.
- W2416406362 cites W1909894032 @default.
- W2416406362 cites W1983999286 @default.
- W2416406362 cites W1997243486 @default.
- W2416406362 cites W2000214666 @default.
- W2416406362 cites W2020999234 @default.
- W2416406362 cites W2022735534 @default.
- W2416406362 cites W2034987376 @default.
- W2416406362 cites W2048823983 @default.
- W2416406362 cites W2059831943 @default.
- W2416406362 cites W2090321726 @default.
- W2416406362 cites W2096992873 @default.
- W2416406362 cites W2097809741 @default.
- W2416406362 cites W2101897555 @default.
- W2416406362 cites W2103504761 @default.
- W2416406362 cites W2103672814 @default.
- W2416406362 cites W2104095591 @default.
- W2416406362 cites W2104398594 @default.
- W2416406362 cites W2105169845 @default.
- W2416406362 cites W2111727749 @default.
- W2416406362 cites W2121014637 @default.
- W2416406362 cites W2122400874 @default.
- W2416406362 cites W2123340620 @default.
- W2416406362 cites W2125201914 @default.
- W2416406362 cites W2125592119 @default.
- W2416406362 cites W2126736494 @default.
- W2416406362 cites W2127370622 @default.
- W2416406362 cites W2128012355 @default.
- W2416406362 cites W2139549194 @default.
- W2416406362 cites W2140717750 @default.
- W2416406362 cites W2145023731 @default.
- W2416406362 cites W2148107745 @default.
- W2416406362 cites W2149184914 @default.
- W2416406362 cites W2150134853 @default.
- W2416406362 cites W2152826865 @default.
- W2416406362 cites W2161004254 @default.
- W2416406362 cites W2165542259 @default.
- W2416406362 cites W2172167640 @default.
- W2416406362 cites W2321793917 @default.
- W2416406362 cites W3106701803 @default.
- W2416406362 cites W3211330693 @default.
- W2416406362 hasPublicationYear "2004" @default.
- W2416406362 type Work @default.
- W2416406362 sameAs 2416406362 @default.
- W2416406362 citedByCount "0" @default.
- W2416406362 crossrefType "journal-article" @default.
- W2416406362 hasAuthorship W2416406362A5010769610 @default.
- W2416406362 hasAuthorship W2416406362A5035290663 @default.
- W2416406362 hasConcept C124504099 @default.
- W2416406362 hasConcept C129641003 @default.
- W2416406362 hasConcept C134306372 @default.
- W2416406362 hasConcept C153180895 @default.
- W2416406362 hasConcept C154945302 @default.
- W2416406362 hasConcept C31972630 @default.
- W2416406362 hasConcept C33923547 @default.
- W2416406362 hasConcept C3768446 @default.
- W2416406362 hasConcept C41008148 @default.
- W2416406362 hasConcept C62354387 @default.
- W2416406362 hasConcept C65885262 @default.
- W2416406362 hasConcept C89600930 @default.
- W2416406362 hasConceptScore W2416406362C124504099 @default.
- W2416406362 hasConceptScore W2416406362C129641003 @default.
- W2416406362 hasConceptScore W2416406362C134306372 @default.
- W2416406362 hasConceptScore W2416406362C153180895 @default.
- W2416406362 hasConceptScore W2416406362C154945302 @default.
- W2416406362 hasConceptScore W2416406362C31972630 @default.
- W2416406362 hasConceptScore W2416406362C33923547 @default.
- W2416406362 hasConceptScore W2416406362C3768446 @default.
- W2416406362 hasConceptScore W2416406362C41008148 @default.
- W2416406362 hasConceptScore W2416406362C62354387 @default.
- W2416406362 hasConceptScore W2416406362C65885262 @default.
- W2416406362 hasConceptScore W2416406362C89600930 @default.
- W2416406362 hasLocation W24164063621 @default.
- W2416406362 hasOpenAccess W2416406362 @default.
- W2416406362 hasPrimaryLocation W24164063621 @default.
- W2416406362 hasRelatedWork W1491051173 @default.
- W2416406362 hasRelatedWork W1492293293 @default.
- W2416406362 hasRelatedWork W1501769036 @default.
- W2416406362 hasRelatedWork W1514038321 @default.
- W2416406362 hasRelatedWork W1536259931 @default.
- W2416406362 hasRelatedWork W175573507 @default.
- W2416406362 hasRelatedWork W176501282 @default.
- W2416406362 hasRelatedWork W1968991373 @default.
- W2416406362 hasRelatedWork W1980858709 @default.
- W2416406362 hasRelatedWork W1998181322 @default.
- W2416406362 hasRelatedWork W2094856190 @default.
- W2416406362 hasRelatedWork W2095199426 @default.
- W2416406362 hasRelatedWork W2101794925 @default.