Matches in SemOpenAlex for { <https://semopenalex.org/work/W2417082620> ?p ?o ?g. }
- W2417082620 abstract "We describe method for purifying category structure of Wikipedia.We propose three methods for identification of associations between categories using SVM.Evaluation indicates the methods allows us to identify new significant relations.The aggregated results have been used for visualization of Wikipedia categories. Description of the data using categories allows one to describe it on a higher abstraction level. In this way, we can operate on aggregated groups of the information, allowing one to see relationships that do not appear explicit when we analyze the individual objects separately. In this paper we present automatic identification of the associations between categories used for organization of the textual data. As experimental data we used a network of English Wikipedia articles and their associated categories, that have been preprocessed by a dedicated filtering method for noise reduction. The main contribution of the paper is the introduction of the method based on supervised machine learning for mining relations between these categories. We describe existing in the literature category proximity metrics as well as introduce three new ones, based on observing the properties of a multilabel Support Vector Machine classifier. The first metric uses classifier predictions, the second uses its errors, and the third is based on its model. Comparison to the existing state-of-the-art methods, and to manual assessments, confirm that the proposed methods are useful and are more flexible than typical approaches. We show how different metrics allow us to introduce new significant relations between categories. Aggregated results of mining categories' associations have been used to build a semantic network that shows a practical application of the research. The proposed method for finding associations can be extended with using other approaches than SVM classification, and can find (other than presented in the paper) applications for mining categories in text repositories. Eg.: it can be used for extending the prediction of the rating in recommender systems or as a method of missing data imputation." @default.
- W2417082620 created "2016-06-24" @default.
- W2417082620 creator A5069031374 @default.
- W2417082620 creator A5090237397 @default.
- W2417082620 date "2016-11-01" @default.
- W2417082620 modified "2023-09-25" @default.
- W2417082620 title "Identification of category associations using a multilabel classifier" @default.
- W2417082620 cites W100789353 @default.
- W2417082620 cites W112967474 @default.
- W2417082620 cites W1503104334 @default.
- W2417082620 cites W1506285740 @default.
- W2417082620 cites W1552847225 @default.
- W2417082620 cites W1566022212 @default.
- W2417082620 cites W1580430739 @default.
- W2417082620 cites W158057341 @default.
- W2417082620 cites W1774954898 @default.
- W2417082620 cites W1956559956 @default.
- W2417082620 cites W1990888471 @default.
- W2417082620 cites W1995973744 @default.
- W2417082620 cites W1996852448 @default.
- W2417082620 cites W2004530333 @default.
- W2417082620 cites W2006064271 @default.
- W2417082620 cites W2008056655 @default.
- W2417082620 cites W2011529470 @default.
- W2417082620 cites W2022710553 @default.
- W2417082620 cites W2032327522 @default.
- W2417082620 cites W2032328503 @default.
- W2417082620 cites W2037965136 @default.
- W2417082620 cites W2042221698 @default.
- W2417082620 cites W2054784110 @default.
- W2417082620 cites W2057096148 @default.
- W2417082620 cites W2077525424 @default.
- W2417082620 cites W2085348334 @default.
- W2417082620 cites W2098162425 @default.
- W2417082620 cites W2098368939 @default.
- W2417082620 cites W2102589777 @default.
- W2417082620 cites W2107901333 @default.
- W2417082620 cites W2110325612 @default.
- W2417082620 cites W2118585731 @default.
- W2417082620 cites W2120779048 @default.
- W2417082620 cites W2122865749 @default.
- W2417082620 cites W2125910575 @default.
- W2417082620 cites W2133864802 @default.
- W2417082620 cites W2149684865 @default.
- W2417082620 cites W2157791002 @default.
- W2417082620 cites W2165612380 @default.
- W2417082620 cites W2166559705 @default.
- W2417082620 cites W2172000360 @default.
- W2417082620 cites W2250770256 @default.
- W2417082620 cites W2593627351 @default.
- W2417082620 cites W2998574808 @default.
- W2417082620 cites W1039439847 @default.
- W2417082620 doi "https://doi.org/10.1016/j.eswa.2016.05.039" @default.
- W2417082620 hasPublicationYear "2016" @default.
- W2417082620 type Work @default.
- W2417082620 sameAs 2417082620 @default.
- W2417082620 citedByCount "5" @default.
- W2417082620 countsByYear W24170826202018 @default.
- W2417082620 countsByYear W24170826202019 @default.
- W2417082620 countsByYear W24170826202021 @default.
- W2417082620 crossrefType "journal-article" @default.
- W2417082620 hasAuthorship W2417082620A5069031374 @default.
- W2417082620 hasAuthorship W2417082620A5090237397 @default.
- W2417082620 hasConcept C111472728 @default.
- W2417082620 hasConcept C116834253 @default.
- W2417082620 hasConcept C119857082 @default.
- W2417082620 hasConcept C12267149 @default.
- W2417082620 hasConcept C124101348 @default.
- W2417082620 hasConcept C124304363 @default.
- W2417082620 hasConcept C138885662 @default.
- W2417082620 hasConcept C154945302 @default.
- W2417082620 hasConcept C23123220 @default.
- W2417082620 hasConcept C36464697 @default.
- W2417082620 hasConcept C41008148 @default.
- W2417082620 hasConcept C59822182 @default.
- W2417082620 hasConcept C86803240 @default.
- W2417082620 hasConcept C95623464 @default.
- W2417082620 hasConceptScore W2417082620C111472728 @default.
- W2417082620 hasConceptScore W2417082620C116834253 @default.
- W2417082620 hasConceptScore W2417082620C119857082 @default.
- W2417082620 hasConceptScore W2417082620C12267149 @default.
- W2417082620 hasConceptScore W2417082620C124101348 @default.
- W2417082620 hasConceptScore W2417082620C124304363 @default.
- W2417082620 hasConceptScore W2417082620C138885662 @default.
- W2417082620 hasConceptScore W2417082620C154945302 @default.
- W2417082620 hasConceptScore W2417082620C23123220 @default.
- W2417082620 hasConceptScore W2417082620C36464697 @default.
- W2417082620 hasConceptScore W2417082620C41008148 @default.
- W2417082620 hasConceptScore W2417082620C59822182 @default.
- W2417082620 hasConceptScore W2417082620C86803240 @default.
- W2417082620 hasConceptScore W2417082620C95623464 @default.
- W2417082620 hasLocation W24170826201 @default.
- W2417082620 hasOpenAccess W2417082620 @default.
- W2417082620 hasPrimaryLocation W24170826201 @default.
- W2417082620 hasRelatedWork W1504471463 @default.
- W2417082620 hasRelatedWork W1534396291 @default.
- W2417082620 hasRelatedWork W1606603570 @default.
- W2417082620 hasRelatedWork W1909353682 @default.
- W2417082620 hasRelatedWork W1969734011 @default.
- W2417082620 hasRelatedWork W1972344714 @default.