Matches in SemOpenAlex for { <https://semopenalex.org/work/W2417553802> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2417553802 abstract "Extreme learning machine (ELM) techniques have received considerable attention in computational intelligence and machine learning communities, because of the significantly low computational time. ELM provides solutions to regression, clustering, binary classification, multiclass classifications and so on, but not to multi-label learning. A thresholding method based ELM is proposed in this paper to adapted ELM for multi-label classification, called extreme learning machine for multi-label classification (ELM-ML). In comparison with other multi-label classification methods, ELM-ML outperforms them in several standard data sets in most cases, especially for applications which only have small labeled data set." @default.
- W2417553802 created "2016-06-24" @default.
- W2417553802 creator A5010860218 @default.
- W2417553802 creator A5034776912 @default.
- W2417553802 creator A5037149834 @default.
- W2417553802 creator A5038886993 @default.
- W2417553802 creator A5069755055 @default.
- W2417553802 creator A5072284681 @default.
- W2417553802 creator A5073902336 @default.
- W2417553802 date "2016-01-01" @default.
- W2417553802 modified "2023-09-26" @default.
- W2417553802 title "ELM-ML: Study on Multi-label Classification Using Extreme Learning Machine" @default.
- W2417553802 cites W1753402186 @default.
- W2417553802 cites W1964599475 @default.
- W2417553802 cites W1998769964 @default.
- W2417553802 cites W2014697970 @default.
- W2417553802 cites W2028759731 @default.
- W2417553802 cites W2052684427 @default.
- W2417553802 cites W2053463056 @default.
- W2417553802 cites W2054659475 @default.
- W2417553802 cites W2065060269 @default.
- W2417553802 cites W2111072639 @default.
- W2417553802 cites W2114315281 @default.
- W2417553802 cites W2119466907 @default.
- W2417553802 cites W2156935079 @default.
- W2417553802 cites W2165967751 @default.
- W2417553802 cites W2166912588 @default.
- W2417553802 doi "https://doi.org/10.1007/978-3-319-28373-9_9" @default.
- W2417553802 hasPublicationYear "2016" @default.
- W2417553802 type Work @default.
- W2417553802 sameAs 2417553802 @default.
- W2417553802 citedByCount "0" @default.
- W2417553802 crossrefType "book-chapter" @default.
- W2417553802 hasAuthorship W2417553802A5010860218 @default.
- W2417553802 hasAuthorship W2417553802A5034776912 @default.
- W2417553802 hasAuthorship W2417553802A5037149834 @default.
- W2417553802 hasAuthorship W2417553802A5038886993 @default.
- W2417553802 hasAuthorship W2417553802A5069755055 @default.
- W2417553802 hasAuthorship W2417553802A5072284681 @default.
- W2417553802 hasAuthorship W2417553802A5073902336 @default.
- W2417553802 hasConcept C119857082 @default.
- W2417553802 hasConcept C12267149 @default.
- W2417553802 hasConcept C123860398 @default.
- W2417553802 hasConcept C153180895 @default.
- W2417553802 hasConcept C154945302 @default.
- W2417553802 hasConcept C2776482837 @default.
- W2417553802 hasConcept C2780150128 @default.
- W2417553802 hasConcept C41008148 @default.
- W2417553802 hasConcept C50644808 @default.
- W2417553802 hasConcept C66905080 @default.
- W2417553802 hasConcept C73555534 @default.
- W2417553802 hasConcept C77967617 @default.
- W2417553802 hasConceptScore W2417553802C119857082 @default.
- W2417553802 hasConceptScore W2417553802C12267149 @default.
- W2417553802 hasConceptScore W2417553802C123860398 @default.
- W2417553802 hasConceptScore W2417553802C153180895 @default.
- W2417553802 hasConceptScore W2417553802C154945302 @default.
- W2417553802 hasConceptScore W2417553802C2776482837 @default.
- W2417553802 hasConceptScore W2417553802C2780150128 @default.
- W2417553802 hasConceptScore W2417553802C41008148 @default.
- W2417553802 hasConceptScore W2417553802C50644808 @default.
- W2417553802 hasConceptScore W2417553802C66905080 @default.
- W2417553802 hasConceptScore W2417553802C73555534 @default.
- W2417553802 hasConceptScore W2417553802C77967617 @default.
- W2417553802 hasLocation W24175538021 @default.
- W2417553802 hasOpenAccess W2417553802 @default.
- W2417553802 hasPrimaryLocation W24175538021 @default.
- W2417553802 hasRelatedWork W1751389566 @default.
- W2417553802 hasRelatedWork W2034051873 @default.
- W2417553802 hasRelatedWork W2156969234 @default.
- W2417553802 hasRelatedWork W2497115336 @default.
- W2417553802 hasRelatedWork W2535441961 @default.
- W2417553802 hasRelatedWork W2740846180 @default.
- W2417553802 hasRelatedWork W2758903924 @default.
- W2417553802 hasRelatedWork W2886408441 @default.
- W2417553802 hasRelatedWork W2896885247 @default.
- W2417553802 hasRelatedWork W2902916695 @default.
- W2417553802 hasRelatedWork W2903397951 @default.
- W2417553802 hasRelatedWork W2914596221 @default.
- W2417553802 hasRelatedWork W2925178532 @default.
- W2417553802 hasRelatedWork W2968262542 @default.
- W2417553802 hasRelatedWork W2996273151 @default.
- W2417553802 hasRelatedWork W2997693482 @default.
- W2417553802 hasRelatedWork W3059730566 @default.
- W2417553802 hasRelatedWork W3094758010 @default.
- W2417553802 hasRelatedWork W3120274202 @default.
- W2417553802 hasRelatedWork W2956568742 @default.
- W2417553802 isParatext "false" @default.
- W2417553802 isRetracted "false" @default.
- W2417553802 magId "2417553802" @default.
- W2417553802 workType "book-chapter" @default.