Matches in SemOpenAlex for { <https://semopenalex.org/work/W2417982926> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2417982926 abstract "OF DISSERTATION Kronecker’s Theory of Binary Bilinear Forms with Applications to Representations of Integers as Sums of Three Squares In 1883 Leopold Kronecker published a paper containing a few explanatory remarks to an earlier paper of his from 1866. His work loosely connected the theory of integral binary bilinear forms to the theory of integral binary quadratic forms. In this dissertation we discover the statements within Kronecker’s paper and offer detailed arithmetic proofs. We begin by developing the theory of binary bilinear forms and their automorphs, providing a classification of integral binary bilinear forms up to equivalence, proper equivalence and complete equivalence. In the second chapter we introduce the class number, proper class number and complete class number as well as two refinements, which facilitate the development of a connection with binary quadratic forms. Our third chapter is devoted to deriving several class number formulas in terms of divisors of the determinant. This chapter also contains lower bounds on the class number for bilinear forms and classifies when these bounds are attained. Lastly, we use the class number formulas to rigorously develop Kronecker’s connection between binary bilinear forms and binary quadratic forms. We supply purely arithmetic proofs of five results stated but not proven in the original paper. We conclude by giving an application of this material to the number of representations of an integer as a sum of three squares and show the resulting formula is equivalent to the well-known result due to Gauss." @default.
- W2417982926 created "2016-06-24" @default.
- W2417982926 creator A5022101335 @default.
- W2417982926 date "2016-01-01" @default.
- W2417982926 modified "2023-09-23" @default.
- W2417982926 title "Kronecker's Theory of Binary Bilinear Forms with Applications to Representations of Integers as Sums of Three Squares" @default.
- W2417982926 cites W1566908256 @default.
- W2417982926 cites W1568671078 @default.
- W2417982926 cites W1986913345 @default.
- W2417982926 cites W2009155740 @default.
- W2417982926 cites W2057182494 @default.
- W2417982926 doi "https://doi.org/10.13023/etd.2016.168" @default.
- W2417982926 hasPublicationYear "2016" @default.
- W2417982926 type Work @default.
- W2417982926 sameAs 2417982926 @default.
- W2417982926 citedByCount "0" @default.
- W2417982926 crossrefType "journal-article" @default.
- W2417982926 hasAuthorship W2417982926A5022101335 @default.
- W2417982926 hasConcept C105795698 @default.
- W2417982926 hasConcept C108710211 @default.
- W2417982926 hasConcept C118615104 @default.
- W2417982926 hasConcept C121332964 @default.
- W2417982926 hasConcept C129844170 @default.
- W2417982926 hasConcept C136119220 @default.
- W2417982926 hasConcept C166437778 @default.
- W2417982926 hasConcept C202444582 @default.
- W2417982926 hasConcept C205203396 @default.
- W2417982926 hasConcept C2524010 @default.
- W2417982926 hasConcept C2777044963 @default.
- W2417982926 hasConcept C2780069185 @default.
- W2417982926 hasConcept C33923547 @default.
- W2417982926 hasConcept C39482219 @default.
- W2417982926 hasConcept C48372109 @default.
- W2417982926 hasConcept C62520636 @default.
- W2417982926 hasConcept C79940087 @default.
- W2417982926 hasConcept C80695182 @default.
- W2417982926 hasConcept C8828549 @default.
- W2417982926 hasConcept C94375191 @default.
- W2417982926 hasConceptScore W2417982926C105795698 @default.
- W2417982926 hasConceptScore W2417982926C108710211 @default.
- W2417982926 hasConceptScore W2417982926C118615104 @default.
- W2417982926 hasConceptScore W2417982926C121332964 @default.
- W2417982926 hasConceptScore W2417982926C129844170 @default.
- W2417982926 hasConceptScore W2417982926C136119220 @default.
- W2417982926 hasConceptScore W2417982926C166437778 @default.
- W2417982926 hasConceptScore W2417982926C202444582 @default.
- W2417982926 hasConceptScore W2417982926C205203396 @default.
- W2417982926 hasConceptScore W2417982926C2524010 @default.
- W2417982926 hasConceptScore W2417982926C2777044963 @default.
- W2417982926 hasConceptScore W2417982926C2780069185 @default.
- W2417982926 hasConceptScore W2417982926C33923547 @default.
- W2417982926 hasConceptScore W2417982926C39482219 @default.
- W2417982926 hasConceptScore W2417982926C48372109 @default.
- W2417982926 hasConceptScore W2417982926C62520636 @default.
- W2417982926 hasConceptScore W2417982926C79940087 @default.
- W2417982926 hasConceptScore W2417982926C80695182 @default.
- W2417982926 hasConceptScore W2417982926C8828549 @default.
- W2417982926 hasConceptScore W2417982926C94375191 @default.
- W2417982926 hasLocation W24179829261 @default.
- W2417982926 hasOpenAccess W2417982926 @default.
- W2417982926 hasPrimaryLocation W24179829261 @default.
- W2417982926 hasRelatedWork W1159562668 @default.
- W2417982926 hasRelatedWork W1972543673 @default.
- W2417982926 hasRelatedWork W1973335311 @default.
- W2417982926 hasRelatedWork W2011879197 @default.
- W2417982926 hasRelatedWork W2012777972 @default.
- W2417982926 hasRelatedWork W2022056007 @default.
- W2417982926 hasRelatedWork W2037940249 @default.
- W2417982926 hasRelatedWork W2045851480 @default.
- W2417982926 hasRelatedWork W2116875882 @default.
- W2417982926 hasRelatedWork W2118232189 @default.
- W2417982926 hasRelatedWork W2314338443 @default.
- W2417982926 hasRelatedWork W2328246670 @default.
- W2417982926 hasRelatedWork W2468795469 @default.
- W2417982926 hasRelatedWork W2773469769 @default.
- W2417982926 hasRelatedWork W2939080001 @default.
- W2417982926 hasRelatedWork W2964223279 @default.
- W2417982926 hasRelatedWork W2964292949 @default.
- W2417982926 hasRelatedWork W2972244204 @default.
- W2417982926 hasRelatedWork W3045651822 @default.
- W2417982926 hasRelatedWork W2566914016 @default.
- W2417982926 isParatext "false" @default.
- W2417982926 isRetracted "false" @default.
- W2417982926 magId "2417982926" @default.
- W2417982926 workType "article" @default.