Matches in SemOpenAlex for { <https://semopenalex.org/work/W2418069516> ?p ?o ?g. }
- W2418069516 endingPage "4366" @default.
- W2418069516 startingPage "4365" @default.
- W2418069516 abstract "We consider the task of predicting various traits of a person given an image of their face. We aim to estimate traits such as gender, ethnicity and age, as well as more subjective traits as the emotion a person expresses or whether they are humorous or attractive. Due to the recent surge of research on Deep Convolutional Neural Networks (CNNs), we begin by using a CNN architecture, and corroborate that CNNs are promising for facial attribute prediction. To further improve performance, we propose a novel approach that incorporates facial landmark information for input images as an additional channel, helping the CNN learn face-specific features so that the landmarks across various training images hold correspondence. We empirically analyze the performance of our proposed method, showing consistent improvement over the baselines across traits. We demonstrate our system on a sizeable Face Attributes Dataset (FAD), comprising of roughly 200,000 labels, for 10 most sought-after traits, for over 10,000 facial images." @default.
- W2418069516 created "2016-06-24" @default.
- W2418069516 creator A5005793557 @default.
- W2418069516 creator A5062949033 @default.
- W2418069516 creator A5068251515 @default.
- W2418069516 creator A5091150085 @default.
- W2418069516 date "2016-02-12" @default.
- W2418069516 modified "2023-09-23" @default.
- W2418069516 title "Predicting personal traits from facial images using Convolutional Neural Networks augmented with facial landmark information" @default.
- W2418069516 cites W1531783871 @default.
- W2418069516 cites W1601963269 @default.
- W2418069516 cites W1795776638 @default.
- W2418069516 cites W1896424170 @default.
- W2418069516 cites W1918392599 @default.
- W2418069516 cites W1998351012 @default.
- W2418069516 cites W2033773055 @default.
- W2418069516 cites W2062518264 @default.
- W2418069516 cites W2095705004 @default.
- W2418069516 cites W2096044434 @default.
- W2418069516 cites W2097128017 @default.
- W2418069516 cites W2105268242 @default.
- W2418069516 cites W2108598243 @default.
- W2418069516 cites W2128200964 @default.
- W2418069516 cites W2135062929 @default.
- W2418069516 cites W2139776396 @default.
- W2418069516 cites W2141649520 @default.
- W2418069516 cites W2144462863 @default.
- W2418069516 cites W2148508669 @default.
- W2418069516 cites W2149273804 @default.
- W2418069516 cites W2150290224 @default.
- W2418069516 cites W2151231840 @default.
- W2418069516 cites W2154164341 @default.
- W2418069516 cites W2155893237 @default.
- W2418069516 cites W2156163116 @default.
- W2418069516 cites W2158198839 @default.
- W2418069516 cites W2160440850 @default.
- W2418069516 cites W2163605009 @default.
- W2418069516 cites W2167793923 @default.
- W2418069516 cites W2182686818 @default.
- W2418069516 cites W2189481455 @default.
- W2418069516 cites W2202922521 @default.
- W2418069516 cites W2325168940 @default.
- W2418069516 cites W2536626143 @default.
- W2418069516 cites W2993281142 @default.
- W2418069516 doi "https://doi.org/10.17863/cam.7611" @default.
- W2418069516 hasPublicationYear "2016" @default.
- W2418069516 type Work @default.
- W2418069516 sameAs 2418069516 @default.
- W2418069516 citedByCount "1" @default.
- W2418069516 countsByYear W24180695162019 @default.
- W2418069516 crossrefType "proceedings-article" @default.
- W2418069516 hasAuthorship W2418069516A5005793557 @default.
- W2418069516 hasAuthorship W2418069516A5062949033 @default.
- W2418069516 hasAuthorship W2418069516A5068251515 @default.
- W2418069516 hasAuthorship W2418069516A5091150085 @default.
- W2418069516 hasConcept C119857082 @default.
- W2418069516 hasConcept C144024400 @default.
- W2418069516 hasConcept C153180895 @default.
- W2418069516 hasConcept C154945302 @default.
- W2418069516 hasConcept C2779304628 @default.
- W2418069516 hasConcept C2780297707 @default.
- W2418069516 hasConcept C31972630 @default.
- W2418069516 hasConcept C36289849 @default.
- W2418069516 hasConcept C41008148 @default.
- W2418069516 hasConcept C81363708 @default.
- W2418069516 hasConceptScore W2418069516C119857082 @default.
- W2418069516 hasConceptScore W2418069516C144024400 @default.
- W2418069516 hasConceptScore W2418069516C153180895 @default.
- W2418069516 hasConceptScore W2418069516C154945302 @default.
- W2418069516 hasConceptScore W2418069516C2779304628 @default.
- W2418069516 hasConceptScore W2418069516C2780297707 @default.
- W2418069516 hasConceptScore W2418069516C31972630 @default.
- W2418069516 hasConceptScore W2418069516C36289849 @default.
- W2418069516 hasConceptScore W2418069516C41008148 @default.
- W2418069516 hasConceptScore W2418069516C81363708 @default.
- W2418069516 hasIssue "1" @default.
- W2418069516 hasLocation W24180695161 @default.
- W2418069516 hasOpenAccess W2418069516 @default.
- W2418069516 hasPrimaryLocation W24180695161 @default.
- W2418069516 hasRelatedWork W2075973462 @default.
- W2418069516 hasRelatedWork W2517304597 @default.
- W2418069516 hasRelatedWork W2527430601 @default.
- W2418069516 hasRelatedWork W2775199170 @default.
- W2418069516 hasRelatedWork W2799930024 @default.
- W2418069516 hasRelatedWork W2803752747 @default.
- W2418069516 hasRelatedWork W2891182955 @default.
- W2418069516 hasRelatedWork W2902503646 @default.
- W2418069516 hasRelatedWork W2902576180 @default.
- W2418069516 hasRelatedWork W2971031835 @default.
- W2418069516 hasRelatedWork W2972996383 @default.
- W2418069516 hasRelatedWork W2976927035 @default.
- W2418069516 hasRelatedWork W2984609752 @default.
- W2418069516 hasRelatedWork W3005923642 @default.
- W2418069516 hasRelatedWork W3021350398 @default.
- W2418069516 hasRelatedWork W3025029811 @default.
- W2418069516 hasRelatedWork W3046670506 @default.
- W2418069516 hasRelatedWork W3113033622 @default.
- W2418069516 hasRelatedWork W3178221902 @default.