Matches in SemOpenAlex for { <https://semopenalex.org/work/W2418243641> ?p ?o ?g. }
- W2418243641 abstract "To extract more information, the properties of infectious disease data, including hidden relationships, could be considered. Here, blood leukocyte data were explored to elucidate whether hidden information, if uncovered, could forecast mortality.Three sets of individuals (n = 132) were investigated, from whom blood leukocyte profiles and microbial tests were conducted (i) cross-sectional analyses performed at admission (before bacteriological tests were completed) from two groups of hospital patients, randomly selected at different time periods, who met septic criteria [confirmed infection and at least three systemic inflammatory response syndrome (SIRS) criteria] but lacked chronic conditions (study I, n = 36; and study II, n = 69); (ii) a similar group, tested over 3 days (n = 7); and (iii) non-infected, SIRS-negative individuals, tested once (n = 20). The data were analyzed by (i) a method that creates complex data combinations, which, based on graphic patterns, partitions the data into subsets and (ii) an approach that does not partition the data. Admission data from SIRS+/infection+ patients were related to 30-day, in-hospital mortality.The non-partitioning approach was not informative: in both study I and study II, the leukocyte data intervals of non-survivors and survivors overlapped. In contrast, the combinatorial method distinguished two subsets that, later, showed twofold (or larger) differences in mortality. While the two subsets did not differ in gender, age, microbial species, or antimicrobial resistance, they revealed different immune profiles. Non-infected, SIRS-negative individuals did not express the high-mortality profile. Longitudinal data from septic patients displayed the pattern associated with the highest mortality within the first 24 h post-admission. Suggesting inflammation coexisted with immunosuppression, one high-mortality sub-subset displayed high neutrophil/lymphocyte ratio values and low lymphocyte percents. A second high-mortality subset showed monocyte-mediated deficiencies. Numerous within- and between-subset comparisons revealed statistically significantly different immune profiles.While the analysis of non-partitioned data can result in information loss, complex (combinatorial) data structures can uncover hidden patterns, which guide data partitioning into subsets that differ in mortality rates and immune profiles. Such information can facilitate diagnostics, monitoring of disease dynamics, and evaluation of subset-specific, patient-specific therapies." @default.
- W2418243641 created "2016-06-24" @default.
- W2418243641 creator A5007496204 @default.
- W2418243641 creator A5016102535 @default.
- W2418243641 creator A5024297883 @default.
- W2418243641 creator A5040839300 @default.
- W2418243641 creator A5056217452 @default.
- W2418243641 creator A5057509192 @default.
- W2418243641 creator A5057972656 @default.
- W2418243641 creator A5062258077 @default.
- W2418243641 creator A5067649167 @default.
- W2418243641 creator A5068850628 @default.
- W2418243641 creator A5079928365 @default.
- W2418243641 creator A5086869838 @default.
- W2418243641 date "2016-06-10" @default.
- W2418243641 modified "2023-10-11" @default.
- W2418243641 title "Detecting the Hidden Properties of Immunological Data and Predicting the Mortality Risks of Infectious Syndromes" @default.
- W2418243641 cites W1108770930 @default.
- W2418243641 cites W1501949263 @default.
- W2418243641 cites W1549367303 @default.
- W2418243641 cites W1830480887 @default.
- W2418243641 cites W1897507705 @default.
- W2418243641 cites W1966814333 @default.
- W2418243641 cites W1972701950 @default.
- W2418243641 cites W1984213393 @default.
- W2418243641 cites W1985032931 @default.
- W2418243641 cites W1985472643 @default.
- W2418243641 cites W1986836608 @default.
- W2418243641 cites W1987838173 @default.
- W2418243641 cites W1989438592 @default.
- W2418243641 cites W1992223493 @default.
- W2418243641 cites W1993700636 @default.
- W2418243641 cites W1995084858 @default.
- W2418243641 cites W2000167232 @default.
- W2418243641 cites W2000642414 @default.
- W2418243641 cites W2002532523 @default.
- W2418243641 cites W2008396782 @default.
- W2418243641 cites W2008434000 @default.
- W2418243641 cites W2014662110 @default.
- W2418243641 cites W2020903759 @default.
- W2418243641 cites W2022274859 @default.
- W2418243641 cites W2025756337 @default.
- W2418243641 cites W2025816689 @default.
- W2418243641 cites W2028553295 @default.
- W2418243641 cites W2029966974 @default.
- W2418243641 cites W2031255008 @default.
- W2418243641 cites W2031534617 @default.
- W2418243641 cites W2033417620 @default.
- W2418243641 cites W2037736267 @default.
- W2418243641 cites W2041461587 @default.
- W2418243641 cites W2043937148 @default.
- W2418243641 cites W2051872597 @default.
- W2418243641 cites W2055348159 @default.
- W2418243641 cites W2057557143 @default.
- W2418243641 cites W2059359375 @default.
- W2418243641 cites W2061730726 @default.
- W2418243641 cites W2068414390 @default.
- W2418243641 cites W2068988426 @default.
- W2418243641 cites W2076515231 @default.
- W2418243641 cites W2086143858 @default.
- W2418243641 cites W2087203965 @default.
- W2418243641 cites W2092509739 @default.
- W2418243641 cites W2095800081 @default.
- W2418243641 cites W2112838506 @default.
- W2418243641 cites W2116195819 @default.
- W2418243641 cites W2116965731 @default.
- W2418243641 cites W2121943809 @default.
- W2418243641 cites W2132660391 @default.
- W2418243641 cites W2133145087 @default.
- W2418243641 cites W2137568391 @default.
- W2418243641 cites W2145562612 @default.
- W2418243641 cites W2145889332 @default.
- W2418243641 cites W2148309862 @default.
- W2418243641 cites W2155581408 @default.
- W2418243641 cites W2161829067 @default.
- W2418243641 cites W2169571534 @default.
- W2418243641 cites W2170099804 @default.
- W2418243641 cites W2174428384 @default.
- W2418243641 cites W2236803952 @default.
- W2418243641 cites W2261776294 @default.
- W2418243641 cites W2291111871 @default.
- W2418243641 cites W3122632052 @default.
- W2418243641 cites W3124006674 @default.
- W2418243641 cites W4242127614 @default.
- W2418243641 cites W4299542564 @default.
- W2418243641 doi "https://doi.org/10.3389/fimmu.2016.00217" @default.
- W2418243641 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4901050" @default.
- W2418243641 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27375617" @default.
- W2418243641 hasPublicationYear "2016" @default.
- W2418243641 type Work @default.
- W2418243641 sameAs 2418243641 @default.
- W2418243641 citedByCount "5" @default.
- W2418243641 countsByYear W24182436412017 @default.
- W2418243641 countsByYear W24182436412019 @default.
- W2418243641 countsByYear W24182436412022 @default.
- W2418243641 countsByYear W24182436412023 @default.
- W2418243641 crossrefType "journal-article" @default.
- W2418243641 hasAuthorship W2418243641A5007496204 @default.
- W2418243641 hasAuthorship W2418243641A5016102535 @default.
- W2418243641 hasAuthorship W2418243641A5024297883 @default.