Matches in SemOpenAlex for { <https://semopenalex.org/work/W2418621285> ?p ?o ?g. }
- W2418621285 abstract "Medical image analysis in clinical practice is commonly carried out on 2D image data, without fully exploiting the detailed 3D anatomical information that is provided by modern non-invasive medical imaging techniques. In this paper, a statistical shape analysis method is presented, which enables the extraction of 3D anatomical shape features from cardiovascular magnetic resonance (CMR) image data, with no need for manual landmarking. The method was applied to repaired aortic coarctation arches that present complex shapes, with the aim of capturing shape features as biomarkers of potential functional relevance. The method is presented from the user-perspective and is evaluated by comparing results with traditional morphometric measurements.Steps required to set up the statistical shape modelling analyses, from pre-processing of the CMR images to parameter setting and strategies to account for size differences and outliers, are described in detail. The anatomical mean shape of 20 aortic arches post-aortic coarctation repair (CoA) was computed based on surface models reconstructed from CMR data. By analysing transformations that deform the mean shape towards each of the individual patient's anatomy, shape patterns related to differences in body surface area (BSA) and ejection fraction (EF) were extracted. The resulting shape vectors, describing shape features in 3D, were compared with traditionally measured 2D and 3D morphometric parameters.The computed 3D mean shape was close to population mean values of geometric shape descriptors and visually integrated characteristic shape features associated with our population of CoA shapes. After removing size effects due to differences in body surface area (BSA) between patients, distinct 3D shape features of the aortic arch correlated significantly with EF (r = 0.521, p = .022) and were well in agreement with trends as shown by traditional shape descriptors.The suggested method has the potential to discover previously unknown 3D shape biomarkers from medical imaging data. Thus, it could contribute to improving diagnosis and risk stratification in complex cardiac disease." @default.
- W2418621285 created "2016-06-24" @default.
- W2418621285 creator A5003253553 @default.
- W2418621285 creator A5013642105 @default.
- W2418621285 creator A5017717812 @default.
- W2418621285 creator A5030881411 @default.
- W2418621285 creator A5039995990 @default.
- W2418621285 creator A5055734440 @default.
- W2418621285 creator A5060808727 @default.
- W2418621285 creator A5070013751 @default.
- W2418621285 creator A5070900765 @default.
- W2418621285 creator A5072730214 @default.
- W2418621285 date "2016-05-31" @default.
- W2418621285 modified "2023-10-06" @default.
- W2418621285 title "A statistical shape modelling framework to extract 3D shape biomarkers from medical imaging data: assessing arch morphology of repaired coarctation of the aorta" @default.
- W2418621285 cites W1500072073 @default.
- W2418621285 cites W1543220894 @default.
- W2418621285 cites W1605841419 @default.
- W2418621285 cites W161501162 @default.
- W2418621285 cites W1909894032 @default.
- W2418621285 cites W1965176637 @default.
- W2418621285 cites W1967282533 @default.
- W2418621285 cites W1969673913 @default.
- W2418621285 cites W1975678598 @default.
- W2418621285 cites W1977478300 @default.
- W2418621285 cites W2004132287 @default.
- W2418621285 cites W2017660598 @default.
- W2418621285 cites W2028835002 @default.
- W2418621285 cites W2029793907 @default.
- W2418621285 cites W2031073504 @default.
- W2418621285 cites W2034867539 @default.
- W2418621285 cites W2049981393 @default.
- W2418621285 cites W2077526164 @default.
- W2418621285 cites W2104276184 @default.
- W2418621285 cites W2109628644 @default.
- W2418621285 cites W2114118826 @default.
- W2418621285 cites W2120135586 @default.
- W2418621285 cites W2125813637 @default.
- W2418621285 cites W2128409098 @default.
- W2418621285 cites W2129217566 @default.
- W2418621285 cites W2140441019 @default.
- W2418621285 cites W2147673683 @default.
- W2418621285 cites W2163831071 @default.
- W2418621285 cites W2170167891 @default.
- W2418621285 cites W2170799543 @default.
- W2418621285 cites W2171506221 @default.
- W2418621285 cites W2327952643 @default.
- W2418621285 cites W2722851397 @default.
- W2418621285 cites W2885878352 @default.
- W2418621285 doi "https://doi.org/10.1186/s12880-016-0142-z" @default.
- W2418621285 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4894556" @default.
- W2418621285 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27245048" @default.
- W2418621285 hasPublicationYear "2016" @default.
- W2418621285 type Work @default.
- W2418621285 sameAs 2418621285 @default.
- W2418621285 citedByCount "59" @default.
- W2418621285 countsByYear W24186212852016 @default.
- W2418621285 countsByYear W24186212852017 @default.
- W2418621285 countsByYear W24186212852018 @default.
- W2418621285 countsByYear W24186212852019 @default.
- W2418621285 countsByYear W24186212852020 @default.
- W2418621285 countsByYear W24186212852021 @default.
- W2418621285 countsByYear W24186212852022 @default.
- W2418621285 countsByYear W24186212852023 @default.
- W2418621285 crossrefType "journal-article" @default.
- W2418621285 hasAuthorship W2418621285A5003253553 @default.
- W2418621285 hasAuthorship W2418621285A5013642105 @default.
- W2418621285 hasAuthorship W2418621285A5017717812 @default.
- W2418621285 hasAuthorship W2418621285A5030881411 @default.
- W2418621285 hasAuthorship W2418621285A5039995990 @default.
- W2418621285 hasAuthorship W2418621285A5055734440 @default.
- W2418621285 hasAuthorship W2418621285A5060808727 @default.
- W2418621285 hasAuthorship W2418621285A5070013751 @default.
- W2418621285 hasAuthorship W2418621285A5070900765 @default.
- W2418621285 hasAuthorship W2418621285A5072730214 @default.
- W2418621285 hasBestOaLocation W24186212851 @default.
- W2418621285 hasConcept C112604564 @default.
- W2418621285 hasConcept C114289077 @default.
- W2418621285 hasConcept C115961682 @default.
- W2418621285 hasConcept C126838900 @default.
- W2418621285 hasConcept C129641003 @default.
- W2418621285 hasConcept C143409427 @default.
- W2418621285 hasConcept C153180895 @default.
- W2418621285 hasConcept C154945302 @default.
- W2418621285 hasConcept C164705383 @default.
- W2418621285 hasConcept C199360897 @default.
- W2418621285 hasConcept C2524010 @default.
- W2418621285 hasConcept C2779980429 @default.
- W2418621285 hasConcept C2781285907 @default.
- W2418621285 hasConcept C2908647359 @default.
- W2418621285 hasConcept C31601959 @default.
- W2418621285 hasConcept C31972630 @default.
- W2418621285 hasConcept C33923547 @default.
- W2418621285 hasConcept C41008148 @default.
- W2418621285 hasConcept C71924100 @default.
- W2418621285 hasConcept C7305733 @default.
- W2418621285 hasConcept C79337645 @default.
- W2418621285 hasConcept C89600930 @default.
- W2418621285 hasConcept C9417928 @default.
- W2418621285 hasConcept C97686452 @default.