Matches in SemOpenAlex for { <https://semopenalex.org/work/W2418878494> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W2418878494 abstract "The growth in the number of cellular mobile subscribers worldwide has far outpaced expected rates of growth with worldwide mobile subscriptions reaching 6 Billion subscribers in 2011 according to the International Telecommunication Union (ITU). More than 75% of this figure is in developing countries. With this rate of growth, greater pressure is placed on radio resources in mobile networks which impacts on the quality and grade of service (GOS) in the network. With varying demands that are generated from different subscriber classes in a network, the ability to distinguish between subscriber types in a network is vital to optimise infrastructure and resources in a mobile network. In this study, a new approach for subscriber classification in mobile cellular networks is proposed. In the proposed approach, traffic data extracted from two network providers in South Africa is considered. The traffic data is first decomposed using traditional feature extraction approaches such as the Empirical Mode Decomposition (EMD) and the Discrete Wavelet Packet Transform (DWPT) approach. The results are then compared with the Difference Histogram approach which considers the number of segments of increase in the time series. Based on the features extracted, classification is then achieved by making use of a Fuzzy C-means algorithm. It is shown from the results obtained that a clear separation between subscriber classes based on inputted traffic signals is possible through the proposed approach. Further, based on the subscriber classes extracted, a novel two-level hybrid channel allocation approach is proposed that makes use of a Mixed Integer Linear Programming (MILP) model to consider the optimisation of radio resources in a mobile network. In the proposed model, two levels of channel allocation are considered: the first considers defining a fixed threshold of channels allocated to each cell in the network. The second level considers a dynamic channel allocation model to account for the variations in traffic experienced in each traffic class identified. Using the optimisation solver, CPLEX, it is shown that an optimal solution can be achieved with the proposed two-level hybrid allocation model" @default.
- W2418878494 created "2016-06-24" @default.
- W2418878494 creator A5003285616 @default.
- W2418878494 date "2012-05-15" @default.
- W2418878494 modified "2023-09-27" @default.
- W2418878494 title "Approaches for the classification of traffic and radio resource management in mobile cellular networks : an application to South Africa" @default.
- W2418878494 cites W1481928450 @default.
- W2418878494 cites W39785869 @default.
- W2418878494 hasPublicationYear "2012" @default.
- W2418878494 type Work @default.
- W2418878494 sameAs 2418878494 @default.
- W2418878494 citedByCount "0" @default.
- W2418878494 crossrefType "dissertation" @default.
- W2418878494 hasAuthorship W2418878494A5003285616 @default.
- W2418878494 hasConcept C124101348 @default.
- W2418878494 hasConcept C153646914 @default.
- W2418878494 hasConcept C31258907 @default.
- W2418878494 hasConcept C41008148 @default.
- W2418878494 hasConcept C555944384 @default.
- W2418878494 hasConcept C76155785 @default.
- W2418878494 hasConcept C78834623 @default.
- W2418878494 hasConcept C79403827 @default.
- W2418878494 hasConceptScore W2418878494C124101348 @default.
- W2418878494 hasConceptScore W2418878494C153646914 @default.
- W2418878494 hasConceptScore W2418878494C31258907 @default.
- W2418878494 hasConceptScore W2418878494C41008148 @default.
- W2418878494 hasConceptScore W2418878494C555944384 @default.
- W2418878494 hasConceptScore W2418878494C76155785 @default.
- W2418878494 hasConceptScore W2418878494C78834623 @default.
- W2418878494 hasConceptScore W2418878494C79403827 @default.
- W2418878494 hasLocation W24188784941 @default.
- W2418878494 hasOpenAccess W2418878494 @default.
- W2418878494 hasPrimaryLocation W24188784941 @default.
- W2418878494 hasRelatedWork W1535494787 @default.
- W2418878494 hasRelatedWork W1573237470 @default.
- W2418878494 hasRelatedWork W1584019048 @default.
- W2418878494 hasRelatedWork W1963804912 @default.
- W2418878494 hasRelatedWork W1965152189 @default.
- W2418878494 hasRelatedWork W1969508661 @default.
- W2418878494 hasRelatedWork W1972607216 @default.
- W2418878494 hasRelatedWork W1986063436 @default.
- W2418878494 hasRelatedWork W2013454449 @default.
- W2418878494 hasRelatedWork W2027253871 @default.
- W2418878494 hasRelatedWork W2044725623 @default.
- W2418878494 hasRelatedWork W2074185604 @default.
- W2418878494 hasRelatedWork W2079776032 @default.
- W2418878494 hasRelatedWork W2100853809 @default.
- W2418878494 hasRelatedWork W2138095722 @default.
- W2418878494 hasRelatedWork W2288474201 @default.
- W2418878494 hasRelatedWork W2570814532 @default.
- W2418878494 hasRelatedWork W2955203024 @default.
- W2418878494 hasRelatedWork W3202608414 @default.
- W2418878494 hasRelatedWork W2182228635 @default.
- W2418878494 isParatext "false" @default.
- W2418878494 isRetracted "false" @default.
- W2418878494 magId "2418878494" @default.
- W2418878494 workType "dissertation" @default.