Matches in SemOpenAlex for { <https://semopenalex.org/work/W2419218429> ?p ?o ?g. }
- W2419218429 abstract "Highly-optimized complex transport networks serve crucial functions in many man-made and natural systems such as power grids and plant or animal vasculature. Often, the relevant optimization functional is non-convex and characterized by many local extrema. In general, finding the global, or nearly global optimum is difficult. In biological systems, it is believed that natural selection slowly guides the network towards an optimized state. However, general coarse grained models for flow networks with local positive feedback rules for the vessel conductivity typically get trapped in low efficiency, local minima. In this work we show how the growth of the underlying tissue, coupled to the dynamical equations for network development, can drive the system to a dramatically improved optimal state. This general model provides a surprisingly simple explanation for the appearance of highly optimized transport networks in biology such as leaf and animal vasculature." @default.
- W2419218429 created "2016-06-24" @default.
- W2419218429 creator A5044737729 @default.
- W2419218429 creator A5078984146 @default.
- W2419218429 date "2016-09-22" @default.
- W2419218429 modified "2023-10-12" @default.
- W2419218429 title "Global Optimization, Local Adaptation, and the Role of Growth in Distribution Networks" @default.
- W2419218429 cites W1499643796 @default.
- W2419218429 cites W1661179413 @default.
- W2419218429 cites W1963533937 @default.
- W2419218429 cites W1981327599 @default.
- W2419218429 cites W1995724099 @default.
- W2419218429 cites W2005422561 @default.
- W2419218429 cites W2006033261 @default.
- W2419218429 cites W2012521670 @default.
- W2419218429 cites W2021558628 @default.
- W2419218429 cites W2023476173 @default.
- W2419218429 cites W2051839631 @default.
- W2419218429 cites W2057846426 @default.
- W2419218429 cites W2062316858 @default.
- W2419218429 cites W2068072750 @default.
- W2419218429 cites W2075286470 @default.
- W2419218429 cites W2075523351 @default.
- W2419218429 cites W2079196852 @default.
- W2419218429 cites W2080843536 @default.
- W2419218429 cites W2087573070 @default.
- W2419218429 cites W2092184130 @default.
- W2419218429 cites W2104880163 @default.
- W2419218429 cites W2109095081 @default.
- W2419218429 cites W2115102727 @default.
- W2419218429 cites W2115503806 @default.
- W2419218429 cites W2117823573 @default.
- W2419218429 cites W2124659894 @default.
- W2419218429 cites W2126643167 @default.
- W2419218429 cites W2135511151 @default.
- W2419218429 cites W2144798562 @default.
- W2419218429 cites W2148111983 @default.
- W2419218429 cites W2151217944 @default.
- W2419218429 cites W2152825691 @default.
- W2419218429 cites W2161629263 @default.
- W2419218429 cites W2331492840 @default.
- W2419218429 cites W2338354052 @default.
- W2419218429 cites W4212823566 @default.
- W2419218429 cites W4231102875 @default.
- W2419218429 cites W1983966343 @default.
- W2419218429 doi "https://doi.org/10.1103/physrevlett.117.138301" @default.
- W2419218429 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27715085" @default.
- W2419218429 hasPublicationYear "2016" @default.
- W2419218429 type Work @default.
- W2419218429 sameAs 2419218429 @default.
- W2419218429 citedByCount "89" @default.
- W2419218429 countsByYear W24192184292016 @default.
- W2419218429 countsByYear W24192184292017 @default.
- W2419218429 countsByYear W24192184292018 @default.
- W2419218429 countsByYear W24192184292019 @default.
- W2419218429 countsByYear W24192184292020 @default.
- W2419218429 countsByYear W24192184292021 @default.
- W2419218429 countsByYear W24192184292022 @default.
- W2419218429 countsByYear W24192184292023 @default.
- W2419218429 crossrefType "journal-article" @default.
- W2419218429 hasAuthorship W2419218429A5044737729 @default.
- W2419218429 hasAuthorship W2419218429A5078984146 @default.
- W2419218429 hasBestOaLocation W24192184291 @default.
- W2419218429 hasConcept C111472728 @default.
- W2419218429 hasConcept C120665830 @default.
- W2419218429 hasConcept C121332964 @default.
- W2419218429 hasConcept C121864883 @default.
- W2419218429 hasConcept C126255220 @default.
- W2419218429 hasConcept C134306372 @default.
- W2419218429 hasConcept C136764020 @default.
- W2419218429 hasConcept C137836250 @default.
- W2419218429 hasConcept C138885662 @default.
- W2419218429 hasConcept C139807058 @default.
- W2419218429 hasConcept C164752517 @default.
- W2419218429 hasConcept C186060115 @default.
- W2419218429 hasConcept C186633575 @default.
- W2419218429 hasConcept C18762648 @default.
- W2419218429 hasConcept C2780586882 @default.
- W2419218429 hasConcept C33923547 @default.
- W2419218429 hasConcept C34947359 @default.
- W2419218429 hasConcept C41008148 @default.
- W2419218429 hasConcept C86803240 @default.
- W2419218429 hasConcept C97355855 @default.
- W2419218429 hasConceptScore W2419218429C111472728 @default.
- W2419218429 hasConceptScore W2419218429C120665830 @default.
- W2419218429 hasConceptScore W2419218429C121332964 @default.
- W2419218429 hasConceptScore W2419218429C121864883 @default.
- W2419218429 hasConceptScore W2419218429C126255220 @default.
- W2419218429 hasConceptScore W2419218429C134306372 @default.
- W2419218429 hasConceptScore W2419218429C136764020 @default.
- W2419218429 hasConceptScore W2419218429C137836250 @default.
- W2419218429 hasConceptScore W2419218429C138885662 @default.
- W2419218429 hasConceptScore W2419218429C139807058 @default.
- W2419218429 hasConceptScore W2419218429C164752517 @default.
- W2419218429 hasConceptScore W2419218429C186060115 @default.
- W2419218429 hasConceptScore W2419218429C186633575 @default.
- W2419218429 hasConceptScore W2419218429C18762648 @default.
- W2419218429 hasConceptScore W2419218429C2780586882 @default.
- W2419218429 hasConceptScore W2419218429C33923547 @default.
- W2419218429 hasConceptScore W2419218429C34947359 @default.