Matches in SemOpenAlex for { <https://semopenalex.org/work/W2420298876> ?p ?o ?g. }
- W2420298876 endingPage "7361" @default.
- W2420298876 startingPage "7344" @default.
- W2420298876 abstract "Rapid detection of dairy cow mastitis is important so corrective action can be taken as soon as possible. Automatically collected sensor data used to monitor the performance and the health state of the cow could be useful for rapid detection of mastitis while reducing the labor needs for monitoring. The state of the art in combining sensor data to predict clinical mastitis still does not perform well enough to be applied in practice. Our objective was to combine a multivariate dynamic linear model (DLM) with a naïve Bayesian classifier (NBC) in a novel method using sensor and nonsensor data to detect clinical cases of mastitis. We also evaluated reductions in the number of sensors for detecting mastitis. With the DLM, we co-modeled 7 sources of sensor data (milk yield, fat, protein, lactose, conductivity, blood, body weight) collected at each milking for individual cows to produce one-step-ahead forecasts for each sensor. The observations were subsequently categorized according to the errors of the forecasted values and the estimated forecast variance. The categorized sensor data were combined with other data pertaining to the cow (week in milk, parity, mastitis history, somatic cell count category, and season) using Bayes’ theorem, which produced a combined probability of the cow having clinical mastitis. If this probability was above a set threshold, the cow was classified as mastitis positive. To illustrate the performance of our method, we used sensor data from 1,003,207 milkings from the University of Florida Dairy Unit collected from 2008 to 2014. Of these, 2,907 milkings were associated with recorded cases of clinical mastitis. Using the DLM/NBC method, we reached an area under the receiver operating characteristic curve of 0.89, with a specificity of 0.81 when the sensitivity was set at 0.80. Specificities with omissions of sensor data ranged from 0.58 to 0.81. These results are comparable to other studies, but differences in data quality, definitions of clinical mastitis, and time windows make comparisons across studies difficult. We found the DLM/NBC method to be a flexible method for combining multiple sensor and nonsensor data sources to predict clinical mastitis and accommodate missing observations. Further research is needed before practical implementation is possible. In particular, the performance of our method needs to be improved in the first 2 wk of lactation. The DLM method produces forecasts that are based on continuously estimated multivariate normal distributions, which makes forecasts and forecast errors easy to interpret, and new sensors can easily be added." @default.
- W2420298876 created "2016-06-24" @default.
- W2420298876 creator A5037487871 @default.
- W2420298876 creator A5045322130 @default.
- W2420298876 creator A5091154351 @default.
- W2420298876 date "2016-09-01" @default.
- W2420298876 modified "2023-10-01" @default.
- W2420298876 title "Bayesian integration of sensor information and a multivariate dynamic linear model for prediction of dairy cow mastitis" @default.
- W2420298876 cites W1968561415 @default.
- W2420298876 cites W1973712589 @default.
- W2420298876 cites W1980950135 @default.
- W2420298876 cites W1987287703 @default.
- W2420298876 cites W1989979548 @default.
- W2420298876 cites W1990515367 @default.
- W2420298876 cites W1998172506 @default.
- W2420298876 cites W2020587498 @default.
- W2420298876 cites W2021251495 @default.
- W2420298876 cites W2027755342 @default.
- W2420298876 cites W2051617857 @default.
- W2420298876 cites W2061647753 @default.
- W2420298876 cites W2067036155 @default.
- W2420298876 cites W2067354731 @default.
- W2420298876 cites W2075499799 @default.
- W2420298876 cites W2075845492 @default.
- W2420298876 cites W2097310075 @default.
- W2420298876 cites W2098233254 @default.
- W2420298876 cites W2104587498 @default.
- W2420298876 cites W2104849102 @default.
- W2420298876 cites W2104960492 @default.
- W2420298876 cites W2111793995 @default.
- W2420298876 cites W2119951406 @default.
- W2420298876 cites W2120184670 @default.
- W2420298876 cites W2127135683 @default.
- W2420298876 cites W2128504007 @default.
- W2420298876 cites W2135665764 @default.
- W2420298876 cites W2140131749 @default.
- W2420298876 cites W2140785063 @default.
- W2420298876 cites W2144099412 @default.
- W2420298876 cites W2144903153 @default.
- W2420298876 cites W2149833324 @default.
- W2420298876 cites W2152122191 @default.
- W2420298876 cites W2156215604 @default.
- W2420298876 cites W2168560110 @default.
- W2420298876 cites W372129934 @default.
- W2420298876 doi "https://doi.org/10.3168/jds.2015-10060" @default.
- W2420298876 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27320667" @default.
- W2420298876 hasPublicationYear "2016" @default.
- W2420298876 type Work @default.
- W2420298876 sameAs 2420298876 @default.
- W2420298876 citedByCount "42" @default.
- W2420298876 countsByYear W24202988762017 @default.
- W2420298876 countsByYear W24202988762018 @default.
- W2420298876 countsByYear W24202988762019 @default.
- W2420298876 countsByYear W24202988762020 @default.
- W2420298876 countsByYear W24202988762021 @default.
- W2420298876 countsByYear W24202988762022 @default.
- W2420298876 countsByYear W24202988762023 @default.
- W2420298876 crossrefType "journal-article" @default.
- W2420298876 hasAuthorship W2420298876A5037487871 @default.
- W2420298876 hasAuthorship W2420298876A5045322130 @default.
- W2420298876 hasAuthorship W2420298876A5091154351 @default.
- W2420298876 hasBestOaLocation W24202988761 @default.
- W2420298876 hasConcept C105795698 @default.
- W2420298876 hasConcept C107673813 @default.
- W2420298876 hasConcept C12267149 @default.
- W2420298876 hasConcept C140793950 @default.
- W2420298876 hasConcept C142724271 @default.
- W2420298876 hasConcept C154945302 @default.
- W2420298876 hasConcept C161584116 @default.
- W2420298876 hasConcept C194775826 @default.
- W2420298876 hasConcept C22641795 @default.
- W2420298876 hasConcept C2776344049 @default.
- W2420298876 hasConcept C2776659692 @default.
- W2420298876 hasConcept C2776792119 @default.
- W2420298876 hasConcept C2778724459 @default.
- W2420298876 hasConcept C2779234561 @default.
- W2420298876 hasConcept C2779885849 @default.
- W2420298876 hasConcept C2780042802 @default.
- W2420298876 hasConcept C2780548643 @default.
- W2420298876 hasConcept C31903555 @default.
- W2420298876 hasConcept C33923547 @default.
- W2420298876 hasConcept C41008148 @default.
- W2420298876 hasConcept C42972112 @default.
- W2420298876 hasConcept C52001869 @default.
- W2420298876 hasConcept C54355233 @default.
- W2420298876 hasConcept C71924100 @default.
- W2420298876 hasConcept C86803240 @default.
- W2420298876 hasConceptScore W2420298876C105795698 @default.
- W2420298876 hasConceptScore W2420298876C107673813 @default.
- W2420298876 hasConceptScore W2420298876C12267149 @default.
- W2420298876 hasConceptScore W2420298876C140793950 @default.
- W2420298876 hasConceptScore W2420298876C142724271 @default.
- W2420298876 hasConceptScore W2420298876C154945302 @default.
- W2420298876 hasConceptScore W2420298876C161584116 @default.
- W2420298876 hasConceptScore W2420298876C194775826 @default.
- W2420298876 hasConceptScore W2420298876C22641795 @default.
- W2420298876 hasConceptScore W2420298876C2776344049 @default.
- W2420298876 hasConceptScore W2420298876C2776659692 @default.