Matches in SemOpenAlex for { <https://semopenalex.org/work/W2421773740> ?p ?o ?g. }
- W2421773740 abstract "Over the years conventional neural networks has shown state-of-art performance on many problems. However, their performance on recognition system is still not widely accepted in the machine learning community because these networks are unable to handle selectivity-invariance dilemma and also suffer from the problem of vanishing gradients. Some of these issues have been addressed by deep learning. Deep learning approaches attempt to disentangle intricate aspects of input by creating multiple levels of representation. These approaches have shown astonishing results in problem domains like recognition system, natural language processing, medical sciences, and in many other fields. The paper presents an overview of different deep learning approaches in a nutshell and also highlights some limitations which are restricting performance of deep neural networks in order to handle more realistic problems." @default.
- W2421773740 created "2016-06-24" @default.
- W2421773740 creator A5002063607 @default.
- W2421773740 creator A5041272001 @default.
- W2421773740 creator A5042074207 @default.
- W2421773740 date "2015-12-01" @default.
- W2421773740 modified "2023-10-12" @default.
- W2421773740 title "A review on advances in deep learning" @default.
- W2421773740 cites W104211377 @default.
- W2421773740 cites W107626213 @default.
- W2421773740 cites W1605005685 @default.
- W2421773740 cites W1810983516 @default.
- W2421773740 cites W1910109443 @default.
- W2421773740 cites W1964812476 @default.
- W2421773740 cites W1966124573 @default.
- W2421773740 cites W1971014294 @default.
- W2421773740 cites W1995562189 @default.
- W2421773740 cites W2006252838 @default.
- W2421773740 cites W2017787659 @default.
- W2421773740 cites W2033310064 @default.
- W2421773740 cites W2036109700 @default.
- W2421773740 cites W2045172843 @default.
- W2421773740 cites W2056308903 @default.
- W2421773740 cites W2062227835 @default.
- W2421773740 cites W2063217105 @default.
- W2421773740 cites W2071310251 @default.
- W2421773740 cites W2076063813 @default.
- W2421773740 cites W2084336274 @default.
- W2421773740 cites W2091987367 @default.
- W2421773740 cites W2092692582 @default.
- W2421773740 cites W2100495367 @default.
- W2421773740 cites W2116360511 @default.
- W2421773740 cites W2117539524 @default.
- W2421773740 cites W2118573797 @default.
- W2421773740 cites W2124537004 @default.
- W2421773740 cites W2133218851 @default.
- W2421773740 cites W2133462743 @default.
- W2421773740 cites W2136051823 @default.
- W2421773740 cites W2136922672 @default.
- W2421773740 cites W2137887516 @default.
- W2421773740 cites W2141125852 @default.
- W2421773740 cites W2142971723 @default.
- W2421773740 cites W2147800946 @default.
- W2421773740 cites W2155904486 @default.
- W2421773740 cites W2156194072 @default.
- W2421773740 cites W2160815625 @default.
- W2421773740 cites W2163922914 @default.
- W2421773740 cites W2543580944 @default.
- W2421773740 cites W2919115771 @default.
- W2421773740 cites W4243013257 @default.
- W2421773740 cites W4247100129 @default.
- W2421773740 cites W4299796063 @default.
- W2421773740 doi "https://doi.org/10.1109/wci.2015.7495514" @default.
- W2421773740 hasPublicationYear "2015" @default.
- W2421773740 type Work @default.
- W2421773740 sameAs 2421773740 @default.
- W2421773740 citedByCount "26" @default.
- W2421773740 countsByYear W24217737402016 @default.
- W2421773740 countsByYear W24217737402017 @default.
- W2421773740 countsByYear W24217737402018 @default.
- W2421773740 countsByYear W24217737402019 @default.
- W2421773740 countsByYear W24217737402020 @default.
- W2421773740 countsByYear W24217737402021 @default.
- W2421773740 countsByYear W24217737402022 @default.
- W2421773740 countsByYear W24217737402023 @default.
- W2421773740 crossrefType "proceedings-article" @default.
- W2421773740 hasAuthorship W2421773740A5002063607 @default.
- W2421773740 hasAuthorship W2421773740A5041272001 @default.
- W2421773740 hasAuthorship W2421773740A5042074207 @default.
- W2421773740 hasConcept C108583219 @default.
- W2421773740 hasConcept C111472728 @default.
- W2421773740 hasConcept C119857082 @default.
- W2421773740 hasConcept C138885662 @default.
- W2421773740 hasConcept C154945302 @default.
- W2421773740 hasConcept C17744445 @default.
- W2421773740 hasConcept C199539241 @default.
- W2421773740 hasConcept C2776359362 @default.
- W2421773740 hasConcept C2778496695 @default.
- W2421773740 hasConcept C2984842247 @default.
- W2421773740 hasConcept C41008148 @default.
- W2421773740 hasConcept C50644808 @default.
- W2421773740 hasConcept C94625758 @default.
- W2421773740 hasConceptScore W2421773740C108583219 @default.
- W2421773740 hasConceptScore W2421773740C111472728 @default.
- W2421773740 hasConceptScore W2421773740C119857082 @default.
- W2421773740 hasConceptScore W2421773740C138885662 @default.
- W2421773740 hasConceptScore W2421773740C154945302 @default.
- W2421773740 hasConceptScore W2421773740C17744445 @default.
- W2421773740 hasConceptScore W2421773740C199539241 @default.
- W2421773740 hasConceptScore W2421773740C2776359362 @default.
- W2421773740 hasConceptScore W2421773740C2778496695 @default.
- W2421773740 hasConceptScore W2421773740C2984842247 @default.
- W2421773740 hasConceptScore W2421773740C41008148 @default.
- W2421773740 hasConceptScore W2421773740C50644808 @default.
- W2421773740 hasConceptScore W2421773740C94625758 @default.
- W2421773740 hasLocation W24217737401 @default.
- W2421773740 hasOpenAccess W2421773740 @default.
- W2421773740 hasPrimaryLocation W24217737401 @default.
- W2421773740 hasRelatedWork W2795261237 @default.
- W2421773740 hasRelatedWork W3014300295 @default.