Matches in SemOpenAlex for { <https://semopenalex.org/work/W242246994> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W242246994 abstract "The present thesis addresses the development and application of pattern recognition methods for classification of oral lesions using digital color images as input. The human oral cavity is a site of numerous diseases and two of the common and visually similar lesions are oral leukoplakia and oral lichenoid reactions. The lichenoid reactions, which may occur in different subclasses, are usually harmless lesions while leukoplakia can develop into cancer. An automatic detection of potentially precancerous lesions can enhance the diagnostic process and reduce the need for biopsy. The problems studied represent a two-class classification problem (potentially precancerous vs. harmless lesions) and a four-class problem (complete classification into leukoplakia, atrophic, plaqueformed and reticular lichenoid reactions). Different classifiers are investigated, from classical Fisher linear discriminant to the novel Support Vector Machines. Different shape and color features are extracted from color images and evaluated as to their discrimination power. Using morphological and color features around 90% classification accuracy has been obtained on the two-class problem and 75% on the four-class problem. This corresponds to the performance of a very experienced oral specialist. The obtained 100% sensitivity for leukoplakia corresponded to 68% specificity for lichenoid reactions. Detection of the lesion boundaries was performed both manually and using Active Contour Models (snakes). The conclusion is that the system can be used as a decision support system and an educational tool in odontological practice. The methods developed have been applied to patients' images acquired from the Department of Oral Medicine, Faculty of Odontology, Goteborg University and Karlstad Central Hospital." @default.
- W242246994 created "2016-06-24" @default.
- W242246994 creator A5048914498 @default.
- W242246994 date "2000-01-01" @default.
- W242246994 modified "2023-09-23" @default.
- W242246994 title "Pattern Recognition Methods for Oral Lesion Classification using Digital Color Images" @default.
- W242246994 hasPublicationYear "2000" @default.
- W242246994 type Work @default.
- W242246994 sameAs 242246994 @default.
- W242246994 citedByCount "1" @default.
- W242246994 crossrefType "journal-article" @default.
- W242246994 hasAuthorship W242246994A5048914498 @default.
- W242246994 hasConcept C121608353 @default.
- W242246994 hasConcept C12267149 @default.
- W242246994 hasConcept C126322002 @default.
- W242246994 hasConcept C153180895 @default.
- W242246994 hasConcept C154945302 @default.
- W242246994 hasConcept C16005928 @default.
- W242246994 hasConcept C199343813 @default.
- W242246994 hasConcept C2777212361 @default.
- W242246994 hasConcept C2777550702 @default.
- W242246994 hasConcept C2909065260 @default.
- W242246994 hasConcept C2986629439 @default.
- W242246994 hasConcept C41008148 @default.
- W242246994 hasConcept C69738355 @default.
- W242246994 hasConcept C71924100 @default.
- W242246994 hasConceptScore W242246994C121608353 @default.
- W242246994 hasConceptScore W242246994C12267149 @default.
- W242246994 hasConceptScore W242246994C126322002 @default.
- W242246994 hasConceptScore W242246994C153180895 @default.
- W242246994 hasConceptScore W242246994C154945302 @default.
- W242246994 hasConceptScore W242246994C16005928 @default.
- W242246994 hasConceptScore W242246994C199343813 @default.
- W242246994 hasConceptScore W242246994C2777212361 @default.
- W242246994 hasConceptScore W242246994C2777550702 @default.
- W242246994 hasConceptScore W242246994C2909065260 @default.
- W242246994 hasConceptScore W242246994C2986629439 @default.
- W242246994 hasConceptScore W242246994C41008148 @default.
- W242246994 hasConceptScore W242246994C69738355 @default.
- W242246994 hasConceptScore W242246994C71924100 @default.
- W242246994 hasLocation W2422469941 @default.
- W242246994 hasOpenAccess W242246994 @default.
- W242246994 hasPrimaryLocation W2422469941 @default.
- W242246994 hasRelatedWork W1509451745 @default.
- W242246994 hasRelatedWork W177483724 @default.
- W242246994 hasRelatedWork W1793780650 @default.
- W242246994 hasRelatedWork W1968847226 @default.
- W242246994 hasRelatedWork W1972406788 @default.
- W242246994 hasRelatedWork W2008981004 @default.
- W242246994 hasRelatedWork W2010124376 @default.
- W242246994 hasRelatedWork W2099233733 @default.
- W242246994 hasRelatedWork W2294635370 @default.
- W242246994 hasRelatedWork W2431459936 @default.
- W242246994 hasRelatedWork W2512818529 @default.
- W242246994 hasRelatedWork W2519628331 @default.
- W242246994 hasRelatedWork W2537548217 @default.
- W242246994 hasRelatedWork W2548604854 @default.
- W242246994 hasRelatedWork W281103636 @default.
- W242246994 hasRelatedWork W2899562626 @default.
- W242246994 hasRelatedWork W2934760417 @default.
- W242246994 hasRelatedWork W3088128435 @default.
- W242246994 hasRelatedWork W3109962546 @default.
- W242246994 hasRelatedWork W3170655429 @default.
- W242246994 isParatext "false" @default.
- W242246994 isRetracted "false" @default.
- W242246994 magId "242246994" @default.
- W242246994 workType "article" @default.