Matches in SemOpenAlex for { <https://semopenalex.org/work/W2422565024> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2422565024 endingPage "207" @default.
- W2422565024 startingPage "198" @default.
- W2422565024 abstract "Car-following models are an essential part of microscopic traffic simulations. For research regarding traffic safety, traffic simulations need to simulate traffic safety related aspects realistically. That means, for example, accidents and near accidents shall occur in the same quantity and in the same way as in reality. Such simulations can be used to make statements about traffic safety with respect to traffic influencing factors and conditions. However, most car-following models are deterministic and do not incorporate uncertainty and fluctuations of perception and behavior. Also, they are explicitly conflict free. Therefore, they are unsuitable for simulating traffic in the desired way. For that reason, a car following model fulfilling the requirements above was developed.Inspired by [1], our car-following model is nondeterministic and data-driven. It is based on the data set of the Intelligent Cruise Control Field Operational Test [2], in which instrumented vehicles have been used by 108 voluntary drivers for several weeks yielding trajectories of approximately 88,000 driving kilometres. In our model, the acceleration a of a vehicle depends on the following input: -v, the velocity of the vehicle, -∆v, the difference between the velocity of the preceding vehicle and its own velocity, -g, the gap between the vehicle and the preceding vehicle and -aL, the acceleration of the preceding vehicle. The acceleration a underlies a probability distribution that depends on v, ∆v, g and aL. That means, if v*, ∆v*, g* and aL* are the current values for v, ∆v, g and aL, then there exist a probability distribution F(v*,∆v*,g*,aL*) and the actual acceleration a will be drawn from F(v*,∆v*,g*,aL*). For each tuple (v,∆v,g,aL), the probability distribution F(v,∆v,g,aL) was determined by the data of the FOT. For that, the data of velocity, velocity difference, gap and acceleration of the preceding vehicle were binned, and for each tuple (v,∆v,g,aL) of binned values, the expected acceleration, the variance and the type of distribution were computed and stored in look-up tables. During a simulation, the probability distribution F(v,∆v,g,aL) to a given tuple (v,∆v,g,aL) can be recovered by these look-up tables.To achieve probability distributions that result in a well behaving car-following model, the data had to be corrected (due to erroneous sensor data) and filtered (due to situations in which the driver reacted to other influences besides the preceding vehicle, e.g. red traffic lights) in numerous steps.Here, we will present the mentioned correction and filtering steps in detail. Further, we will discuss the derived probability distributions and the calibration of the model. Finally, the model will be evaluated and compared to other existing car-following models in several scenarios with respect to various criteria, e.g. the number of accidents, the distribution of surrogate safety measures, and the fundamental diagram." @default.
- W2422565024 created "2016-06-24" @default.
- W2422565024 creator A5044366009 @default.
- W2422565024 creator A5044993745 @default.
- W2422565024 creator A5050814831 @default.
- W2422565024 date "2016-01-01" @default.
- W2422565024 modified "2023-10-05" @default.
- W2422565024 title "A Stochastic Car Following Model" @default.
- W2422565024 cites W2049176600 @default.
- W2422565024 cites W2127135061 @default.
- W2422565024 doi "https://doi.org/10.1016/j.trpro.2016.06.017" @default.
- W2422565024 hasPublicationYear "2016" @default.
- W2422565024 type Work @default.
- W2422565024 sameAs 2422565024 @default.
- W2422565024 citedByCount "12" @default.
- W2422565024 countsByYear W24225650242017 @default.
- W2422565024 countsByYear W24225650242018 @default.
- W2422565024 countsByYear W24225650242019 @default.
- W2422565024 countsByYear W24225650242020 @default.
- W2422565024 countsByYear W24225650242021 @default.
- W2422565024 countsByYear W24225650242022 @default.
- W2422565024 countsByYear W24225650242023 @default.
- W2422565024 crossrefType "journal-article" @default.
- W2422565024 hasAuthorship W2422565024A5044366009 @default.
- W2422565024 hasAuthorship W2422565024A5044993745 @default.
- W2422565024 hasAuthorship W2422565024A5050814831 @default.
- W2422565024 hasBestOaLocation W24225650241 @default.
- W2422565024 hasConcept C105795698 @default.
- W2422565024 hasConcept C113168747 @default.
- W2422565024 hasConcept C117896860 @default.
- W2422565024 hasConcept C121332964 @default.
- W2422565024 hasConcept C127413603 @default.
- W2422565024 hasConcept C149441793 @default.
- W2422565024 hasConcept C154945302 @default.
- W2422565024 hasConcept C171146098 @default.
- W2422565024 hasConcept C177264268 @default.
- W2422565024 hasConcept C199360897 @default.
- W2422565024 hasConcept C22212356 @default.
- W2422565024 hasConcept C2775924081 @default.
- W2422565024 hasConcept C2778391309 @default.
- W2422565024 hasConcept C2778448659 @default.
- W2422565024 hasConcept C33923547 @default.
- W2422565024 hasConcept C41008148 @default.
- W2422565024 hasConcept C44154836 @default.
- W2422565024 hasConcept C64543145 @default.
- W2422565024 hasConcept C74650414 @default.
- W2422565024 hasConceptScore W2422565024C105795698 @default.
- W2422565024 hasConceptScore W2422565024C113168747 @default.
- W2422565024 hasConceptScore W2422565024C117896860 @default.
- W2422565024 hasConceptScore W2422565024C121332964 @default.
- W2422565024 hasConceptScore W2422565024C127413603 @default.
- W2422565024 hasConceptScore W2422565024C149441793 @default.
- W2422565024 hasConceptScore W2422565024C154945302 @default.
- W2422565024 hasConceptScore W2422565024C171146098 @default.
- W2422565024 hasConceptScore W2422565024C177264268 @default.
- W2422565024 hasConceptScore W2422565024C199360897 @default.
- W2422565024 hasConceptScore W2422565024C22212356 @default.
- W2422565024 hasConceptScore W2422565024C2775924081 @default.
- W2422565024 hasConceptScore W2422565024C2778391309 @default.
- W2422565024 hasConceptScore W2422565024C2778448659 @default.
- W2422565024 hasConceptScore W2422565024C33923547 @default.
- W2422565024 hasConceptScore W2422565024C41008148 @default.
- W2422565024 hasConceptScore W2422565024C44154836 @default.
- W2422565024 hasConceptScore W2422565024C64543145 @default.
- W2422565024 hasConceptScore W2422565024C74650414 @default.
- W2422565024 hasLocation W24225650241 @default.
- W2422565024 hasLocation W24225650242 @default.
- W2422565024 hasOpenAccess W2422565024 @default.
- W2422565024 hasPrimaryLocation W24225650241 @default.
- W2422565024 hasRelatedWork W1969972559 @default.
- W2422565024 hasRelatedWork W2018678329 @default.
- W2422565024 hasRelatedWork W2028775625 @default.
- W2422565024 hasRelatedWork W2261324073 @default.
- W2422565024 hasRelatedWork W2380254862 @default.
- W2422565024 hasRelatedWork W2748952813 @default.
- W2422565024 hasRelatedWork W2899084033 @default.
- W2422565024 hasRelatedWork W3081858615 @default.
- W2422565024 hasRelatedWork W334888203 @default.
- W2422565024 hasRelatedWork W621937140 @default.
- W2422565024 hasVolume "15" @default.
- W2422565024 isParatext "false" @default.
- W2422565024 isRetracted "false" @default.
- W2422565024 magId "2422565024" @default.
- W2422565024 workType "article" @default.