Matches in SemOpenAlex for { <https://semopenalex.org/work/W2423169273> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2423169273 abstract "Infrared (IR) photon detectors must be cryogenically cooled to provide the highest possible performance, usuallyto temperatures at or below ~ 150K. Such low operating temperatures (Top) impose very stringent requirementson cryogenic coolers. As such, there is a constant push in the industry to engineer new detector architecturesthat operate at higher temperatures, so called higher operating temperature (HOT) detectors. The ultimategoal for HOT detectors is room temperature operation. While this is not currently possibly for photon detectors,significant increases in Top are nonetheless beneficial in terms of reduced size, weight, power and cost (SWAP-C).The most common HgCdTe IR detector architecture is the P+n heterostructure photodiode (where a capital letterindicates a wide band gap relative to the active layer or “AL”). A variant of this architecture, the P+N−n−N−Nheterostructure photodiode, should have a near identical photo-response to the P+n heterostructure, but withsignificantly lower dark diffusion current. The P+N−n−N−N heterostructure utilizes a very low doped AL,surrounded on both sides by wide-gap layers. The low doping in the AL, allows the AL to be fully depleted,which drastically reduces the Auger recombination rate in that layer. Minimizing the Auger recombination ratereduces the intrinsic dark diffusion current, thereby increasing Top. Note when we use the term “recombinationrate” for photodiodes, we are actually referring to the net generation and recombination of minority carriers(and corresponding dark currents) by the Auger process. For these benefits to be realized, these devices mustbe intrinsically limited and well passivated. The focus of this proceeding is on studying the fundamental physicsof the intrinsic dark currents in ideal P+N−n−N−N heterostructures, namely Auger recombination. Due tothe complexity of these devices, specifically the presence of multiple heterojunctions, numerical device modelingtechniques must be utilized to predict and understand the device operation, as analytical models do not existfor heterojunction devices." @default.
- W2423169273 created "2016-06-24" @default.
- W2423169273 creator A5059047890 @default.
- W2423169273 creator A5065079950 @default.
- W2423169273 creator A5072577477 @default.
- W2423169273 creator A5075624042 @default.
- W2423169273 date "2016-06-17" @default.
- W2423169273 modified "2023-10-18" @default.
- W2423169273 title "Analysis of the auger recombination rate in P<sup>+</sup><i>N−n−N−N</i>HgCdTe detectors for HOT applications" @default.
- W2423169273 cites W1976189276 @default.
- W2423169273 cites W1988753969 @default.
- W2423169273 cites W1999245706 @default.
- W2423169273 cites W2006157752 @default.
- W2423169273 cites W2023070862 @default.
- W2423169273 cites W2046078626 @default.
- W2423169273 cites W2055309078 @default.
- W2423169273 cites W2072813597 @default.
- W2423169273 cites W2073807668 @default.
- W2423169273 cites W2142273994 @default.
- W2423169273 cites W2347009312 @default.
- W2423169273 cites W4245071650 @default.
- W2423169273 doi "https://doi.org/10.1117/12.2224383" @default.
- W2423169273 hasPublicationYear "2016" @default.
- W2423169273 type Work @default.
- W2423169273 sameAs 2423169273 @default.
- W2423169273 citedByCount "4" @default.
- W2423169273 countsByYear W24231692732017 @default.
- W2423169273 countsByYear W24231692732019 @default.
- W2423169273 countsByYear W24231692732020 @default.
- W2423169273 crossrefType "proceedings-article" @default.
- W2423169273 hasAuthorship W2423169273A5059047890 @default.
- W2423169273 hasAuthorship W2423169273A5065079950 @default.
- W2423169273 hasAuthorship W2423169273A5072577477 @default.
- W2423169273 hasAuthorship W2423169273A5075624042 @default.
- W2423169273 hasConcept C104317684 @default.
- W2423169273 hasConcept C120665830 @default.
- W2423169273 hasConcept C121332964 @default.
- W2423169273 hasConcept C156695909 @default.
- W2423169273 hasConcept C171627272 @default.
- W2423169273 hasConcept C184779094 @default.
- W2423169273 hasConcept C185592680 @default.
- W2423169273 hasConcept C2780646311 @default.
- W2423169273 hasConcept C49040817 @default.
- W2423169273 hasConcept C55493867 @default.
- W2423169273 hasConcept C94915269 @default.
- W2423169273 hasConceptScore W2423169273C104317684 @default.
- W2423169273 hasConceptScore W2423169273C120665830 @default.
- W2423169273 hasConceptScore W2423169273C121332964 @default.
- W2423169273 hasConceptScore W2423169273C156695909 @default.
- W2423169273 hasConceptScore W2423169273C171627272 @default.
- W2423169273 hasConceptScore W2423169273C184779094 @default.
- W2423169273 hasConceptScore W2423169273C185592680 @default.
- W2423169273 hasConceptScore W2423169273C2780646311 @default.
- W2423169273 hasConceptScore W2423169273C49040817 @default.
- W2423169273 hasConceptScore W2423169273C55493867 @default.
- W2423169273 hasConceptScore W2423169273C94915269 @default.
- W2423169273 hasLocation W24231692731 @default.
- W2423169273 hasOpenAccess W2423169273 @default.
- W2423169273 hasPrimaryLocation W24231692731 @default.
- W2423169273 hasRelatedWork W1659993874 @default.
- W2423169273 hasRelatedWork W1965902387 @default.
- W2423169273 hasRelatedWork W2042935752 @default.
- W2423169273 hasRelatedWork W2046958884 @default.
- W2423169273 hasRelatedWork W2063753001 @default.
- W2423169273 hasRelatedWork W2077514907 @default.
- W2423169273 hasRelatedWork W2347458266 @default.
- W2423169273 hasRelatedWork W3143014114 @default.
- W2423169273 hasRelatedWork W836133993 @default.
- W2423169273 hasRelatedWork W2003493524 @default.
- W2423169273 isParatext "false" @default.
- W2423169273 isRetracted "false" @default.
- W2423169273 magId "2423169273" @default.
- W2423169273 workType "article" @default.