Matches in SemOpenAlex for { <https://semopenalex.org/work/W2425204757> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2425204757 endingPage "25" @default.
- W2425204757 startingPage "1" @default.
- W2425204757 abstract "Minimization schema in nature affects the material arrangements of most objects, independent of scale. The field of cellular solids has focused on the generalization of these natural architectures (bone, wood, coral, cork, honeycombs) for material improvement and elucidation into natural growth mechanisms. We applied this approach for the comparison of a set of complex three-dimensional (3D) architectures containing the same material volume but dissimilar architectural arrangements. Ball and stick representations of these architectures at varied material volumes were characterized according to geometric properties, such as beam length, beam diameter, surface area, space filling efficiency, and pore volume. Modulus, deformation properties, and stress distributions as contributed solely by architectural arrangements was revealed through finite element simulations. We demonstrated that while density is the greatest factor in controlling modulus, optimal material arrangement could result in equal modulus values even with volumetric discrepancies of up to 10%. We showed that at low porosities, loss of architectural complexity allows these architectures to be modeled as closed celled solids. At these lower porosities, the smaller pores do not greatly contribute to the overall modulus of the architectures and that a stress backbone is responsible for the modulus. Our results further indicated that when considering a deposition-based growth pattern, such as occurs in nature, surface area plays a large role in the resulting strength of these architectures, specifically for systems like bone. This completed study represents the first step towards the development of mathematical algorithms to describe the mechanical properties of regular and symmetric architectures used for tissue regenerative applications. The eventual goal is to create logical set of rules that can explain the structural properties of an architecture based solely upon its geometry. The information could then be used in an automatic fashion to generate patient-specific scaffolds for the treatment of tissue defects." @default.
- W2425204757 created "2016-06-24" @default.
- W2425204757 creator A5031905516 @default.
- W2425204757 creator A5048151293 @default.
- W2425204757 creator A5072471772 @default.
- W2425204757 date "2012-01-01" @default.
- W2425204757 modified "2023-09-26" @default.
- W2425204757 title "Computer-Aided Tissue Engineering: Benefiting from the Control Over Scaffold Micro-Architecture" @default.
- W2425204757 cites W158909985 @default.
- W2425204757 cites W1596269324 @default.
- W2425204757 cites W1974587859 @default.
- W2425204757 cites W1985615693 @default.
- W2425204757 cites W1993623578 @default.
- W2425204757 cites W1995887776 @default.
- W2425204757 cites W2003488635 @default.
- W2425204757 cites W2005583277 @default.
- W2425204757 cites W2010361875 @default.
- W2425204757 cites W2017150999 @default.
- W2425204757 cites W2021449243 @default.
- W2425204757 cites W2034155385 @default.
- W2425204757 cites W2034771285 @default.
- W2425204757 cites W2035733860 @default.
- W2425204757 cites W2041897038 @default.
- W2425204757 cites W2057484062 @default.
- W2425204757 cites W2067667764 @default.
- W2425204757 cites W2069550344 @default.
- W2425204757 cites W2073335558 @default.
- W2425204757 cites W2084398066 @default.
- W2425204757 cites W2086269269 @default.
- W2425204757 cites W2089989820 @default.
- W2425204757 cites W2090109996 @default.
- W2425204757 cites W2095983193 @default.
- W2425204757 cites W2139438415 @default.
- W2425204757 cites W2140594197 @default.
- W2425204757 cites W2141425377 @default.
- W2425204757 cites W2152078424 @default.
- W2425204757 cites W2165327556 @default.
- W2425204757 cites W2170515999 @default.
- W2425204757 cites W2316280580 @default.
- W2425204757 cites W4232627485 @default.
- W2425204757 doi "https://doi.org/10.1007/978-1-61779-764-4_1" @default.
- W2425204757 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22692601" @default.
- W2425204757 hasPublicationYear "2012" @default.
- W2425204757 type Work @default.
- W2425204757 sameAs 2425204757 @default.
- W2425204757 citedByCount "3" @default.
- W2425204757 countsByYear W24252047572013 @default.
- W2425204757 countsByYear W24252047572017 @default.
- W2425204757 countsByYear W24252047572020 @default.
- W2425204757 crossrefType "book-chapter" @default.
- W2425204757 hasAuthorship W2425204757A5031905516 @default.
- W2425204757 hasAuthorship W2425204757A5048151293 @default.
- W2425204757 hasAuthorship W2425204757A5072471772 @default.
- W2425204757 hasConcept C159985019 @default.
- W2425204757 hasConcept C192562407 @default.
- W2425204757 hasConcept C193867417 @default.
- W2425204757 hasConcept C31555180 @default.
- W2425204757 hasConceptScore W2425204757C159985019 @default.
- W2425204757 hasConceptScore W2425204757C192562407 @default.
- W2425204757 hasConceptScore W2425204757C193867417 @default.
- W2425204757 hasConceptScore W2425204757C31555180 @default.
- W2425204757 hasLocation W24252047571 @default.
- W2425204757 hasLocation W24252047572 @default.
- W2425204757 hasOpenAccess W2425204757 @default.
- W2425204757 hasPrimaryLocation W24252047571 @default.
- W2425204757 hasRelatedWork W2051270029 @default.
- W2425204757 hasRelatedWork W2063778609 @default.
- W2425204757 hasRelatedWork W2082293200 @default.
- W2425204757 hasRelatedWork W2137307547 @default.
- W2425204757 hasRelatedWork W2380293314 @default.
- W2425204757 hasRelatedWork W2943188944 @default.
- W2425204757 hasRelatedWork W3008690834 @default.
- W2425204757 hasRelatedWork W3082440218 @default.
- W2425204757 hasRelatedWork W4242480814 @default.
- W2425204757 hasRelatedWork W4285802202 @default.
- W2425204757 isParatext "false" @default.
- W2425204757 isRetracted "false" @default.
- W2425204757 magId "2425204757" @default.
- W2425204757 workType "book-chapter" @default.