Matches in SemOpenAlex for { <https://semopenalex.org/work/W2430629609> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2430629609 endingPage "129" @default.
- W2430629609 startingPage "129" @default.
- W2430629609 abstract "Spatial databases are being used in an increasing number of application domains. Handling spatial joins efficiently has become a pressing problem, since most relational join methods are not directly applicable in the spatial domain. For example, the sort-merge join method requires a total order on join attributes values, which spatial attributes lack. Hash-join algorithms are efficient for natural joins, but spatial join criteria are too complex to be covered by the simple semantics of natural joins.Most current spatial join algorithms rely on pre-computed spatial indices, but this approach is inefficient and limited in its usefulness. Existing spatial indices are mostly designed for spatial selections, and are inefficient when used for joins. Further, the operand datasets of spatial joins do not always have pre-computed spatial indices, for example, when they are dynamically generated by other database operations.This dissertation proposes a new class of methods to support dynamic and efficient spatial join processing. Our work has two goals: first, to obviate the need for pre-computed spatial indices by designing spatial join methods that use dynamically constructed data structures, and second, to promote the efficiency of spatial join processing to the level of relational join processing.We propose a new spatial index, called the seeded tree, which is effective for spatial joins and efficient to construct at join time. Three principles guide the design of the seeded tree method. First, the construction of a join index should exploit available information about the join, so that the index is tailored for that join. We therefore guide the construction of seeded trees with information extracted either directly from the underlying dataset or an existing index tree. Second, the structure of join indices should be optimized for joins, and free of constraints imposed for supporting selection operations. By relaxing the structure of seeded trees to various degrees, we lower the construction cost and make join processing more efficient. Third, buffer space and I/O should be carefully managed. We develop the technique of batch writes that efficiently reclaims buffer space and accesses disks using sequential I/O. Our performance studies show that our methods run much faster than older methods.We then extend our spatial join methods, and propose the spatial hash-join approach, which combines the benefits of the relational hash-join paradigm and the seeded tree techniques. We examine the difficulties if applying relational techniques to spatial domains, and define a framework for designing spatial hash joins. Based on this framework, we design and test a spatial hash-join method, that requires no pre-computed indices, and performs better than current methods even when these methods are given pre-computed indices.This thesis provides very efficient solutions to the hitherto difficult and expensive problem of spatial joins. By not requiring pre-computed indices, it also increases the range of choices available to spatial query optimizers, enabling them to devise more efficient plans for complex queries. The buffer and I/O management techniques developed in this thesis can be applied to reduce I/O cost significantly for both spatial and relational join processing." @default.
- W2430629609 created "2016-06-24" @default.
- W2430629609 creator A5042459332 @default.
- W2430629609 creator A5076770874 @default.
- W2430629609 date "1996-01-01" @default.
- W2430629609 modified "2023-09-24" @default.
- W2430629609 title "Efficient join processing in spatial database systems" @default.
- W2430629609 hasPublicationYear "1996" @default.
- W2430629609 type Work @default.
- W2430629609 sameAs 2430629609 @default.
- W2430629609 citedByCount "0" @default.
- W2430629609 crossrefType "dissertation" @default.
- W2430629609 hasAuthorship W2430629609A5042459332 @default.
- W2430629609 hasAuthorship W2430629609A5076770874 @default.
- W2430629609 hasConcept C114614502 @default.
- W2430629609 hasConcept C124101348 @default.
- W2430629609 hasConcept C159620131 @default.
- W2430629609 hasConcept C164120249 @default.
- W2430629609 hasConcept C172722865 @default.
- W2430629609 hasConcept C188805328 @default.
- W2430629609 hasConcept C192939062 @default.
- W2430629609 hasConcept C199360897 @default.
- W2430629609 hasConcept C203570394 @default.
- W2430629609 hasConcept C203689450 @default.
- W2430629609 hasConcept C205649164 @default.
- W2430629609 hasConcept C23123220 @default.
- W2430629609 hasConcept C2776124973 @default.
- W2430629609 hasConcept C2778692605 @default.
- W2430629609 hasConcept C33923547 @default.
- W2430629609 hasConcept C41008148 @default.
- W2430629609 hasConcept C62649853 @default.
- W2430629609 hasConcept C77088390 @default.
- W2430629609 hasConcept C80444323 @default.
- W2430629609 hasConcept C88548561 @default.
- W2430629609 hasConcept C97854310 @default.
- W2430629609 hasConceptScore W2430629609C114614502 @default.
- W2430629609 hasConceptScore W2430629609C124101348 @default.
- W2430629609 hasConceptScore W2430629609C159620131 @default.
- W2430629609 hasConceptScore W2430629609C164120249 @default.
- W2430629609 hasConceptScore W2430629609C172722865 @default.
- W2430629609 hasConceptScore W2430629609C188805328 @default.
- W2430629609 hasConceptScore W2430629609C192939062 @default.
- W2430629609 hasConceptScore W2430629609C199360897 @default.
- W2430629609 hasConceptScore W2430629609C203570394 @default.
- W2430629609 hasConceptScore W2430629609C203689450 @default.
- W2430629609 hasConceptScore W2430629609C205649164 @default.
- W2430629609 hasConceptScore W2430629609C23123220 @default.
- W2430629609 hasConceptScore W2430629609C2776124973 @default.
- W2430629609 hasConceptScore W2430629609C2778692605 @default.
- W2430629609 hasConceptScore W2430629609C33923547 @default.
- W2430629609 hasConceptScore W2430629609C41008148 @default.
- W2430629609 hasConceptScore W2430629609C62649853 @default.
- W2430629609 hasConceptScore W2430629609C77088390 @default.
- W2430629609 hasConceptScore W2430629609C80444323 @default.
- W2430629609 hasConceptScore W2430629609C88548561 @default.
- W2430629609 hasConceptScore W2430629609C97854310 @default.
- W2430629609 hasLocation W24306296091 @default.
- W2430629609 hasOpenAccess W2430629609 @default.
- W2430629609 hasPrimaryLocation W24306296091 @default.
- W2430629609 hasRelatedWork W126278923 @default.
- W2430629609 hasRelatedWork W1579794476 @default.
- W2430629609 hasRelatedWork W1603474531 @default.
- W2430629609 hasRelatedWork W2000637076 @default.
- W2430629609 hasRelatedWork W2008305564 @default.
- W2430629609 hasRelatedWork W2043224356 @default.
- W2430629609 hasRelatedWork W2045235113 @default.
- W2430629609 hasRelatedWork W2095891890 @default.
- W2430629609 hasRelatedWork W2103578815 @default.
- W2430629609 hasRelatedWork W2103735486 @default.
- W2430629609 hasRelatedWork W2122837765 @default.
- W2430629609 hasRelatedWork W2123060058 @default.
- W2430629609 hasRelatedWork W2125233616 @default.
- W2430629609 hasRelatedWork W2146894772 @default.
- W2430629609 hasRelatedWork W2295596515 @default.
- W2430629609 hasRelatedWork W2364913854 @default.
- W2430629609 hasRelatedWork W2393491644 @default.
- W2430629609 hasRelatedWork W2615067932 @default.
- W2430629609 hasRelatedWork W3103057255 @default.
- W2430629609 hasRelatedWork W3214190608 @default.
- W2430629609 isParatext "false" @default.
- W2430629609 isRetracted "false" @default.
- W2430629609 magId "2430629609" @default.
- W2430629609 workType "dissertation" @default.