Matches in SemOpenAlex for { <https://semopenalex.org/work/W2431115687> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2431115687 abstract "Pervasive sensing is one of the most prominent technologies being adapted by current process industry. Every process industry is highly equipped with wireless sensors for process monitoring in which location, human intervention is to be limited. Thus, major challenge with these numerous sensors is to store and analyze large volume of sensor data stream. This paper focuses on sensor data analysis along with anomaly detection specific to process sector because the placement and nature of the data generated from these sensors follows a specific pattern during process flow. This data is more structured than other type of big data, in which data is more unstructured. No assurance that any single algorithm can produce optimized results. So this paper presents a generic frame work with ensemble of methods such as probability and statistics, Neural Networks and Clustering. Here Neural Net is supervised learning model to predict new data based on trained data. But unseen data is wrongly predictable by Neural nets. For that reason clustering is used as Unsupervised learning model to efficiently handle concept drifts in sensor data stream. These solutions are implemented to various data scenarios with practical means to improve prediction and anomaly detection accuracy of equipment as well as process flows. To the best of our knowledge no single framework is available to fully analyse sensor data stream related to independent, correlation based, group wise with respect to process flow segmentation and process and sub process hierarchy analysis." @default.
- W2431115687 created "2016-06-24" @default.
- W2431115687 creator A5013002387 @default.
- W2431115687 creator A5030055591 @default.
- W2431115687 date "2015-12-01" @default.
- W2431115687 modified "2023-10-16" @default.
- W2431115687 title "Sensor data analysis and anomaly detection using predictive analytics for process industries" @default.
- W2431115687 cites W1492382056 @default.
- W2431115687 cites W1498903151 @default.
- W2431115687 cites W1843256411 @default.
- W2431115687 cites W204230938 @default.
- W2431115687 cites W2042696696 @default.
- W2431115687 cites W2051224630 @default.
- W2431115687 cites W2058118558 @default.
- W2431115687 cites W2094848836 @default.
- W2431115687 doi "https://doi.org/10.1109/wci.2015.7495528" @default.
- W2431115687 hasPublicationYear "2015" @default.
- W2431115687 type Work @default.
- W2431115687 sameAs 2431115687 @default.
- W2431115687 citedByCount "5" @default.
- W2431115687 countsByYear W24311156872018 @default.
- W2431115687 countsByYear W24311156872019 @default.
- W2431115687 countsByYear W24311156872020 @default.
- W2431115687 countsByYear W24311156872021 @default.
- W2431115687 crossrefType "proceedings-article" @default.
- W2431115687 hasAuthorship W2431115687A5013002387 @default.
- W2431115687 hasAuthorship W2431115687A5030055591 @default.
- W2431115687 hasConcept C111919701 @default.
- W2431115687 hasConcept C119857082 @default.
- W2431115687 hasConcept C124101348 @default.
- W2431115687 hasConcept C154945302 @default.
- W2431115687 hasConcept C24590314 @default.
- W2431115687 hasConcept C31258907 @default.
- W2431115687 hasConcept C41008148 @default.
- W2431115687 hasConcept C50644808 @default.
- W2431115687 hasConcept C67186912 @default.
- W2431115687 hasConcept C73555534 @default.
- W2431115687 hasConcept C739882 @default.
- W2431115687 hasConcept C75684735 @default.
- W2431115687 hasConcept C77088390 @default.
- W2431115687 hasConcept C89198739 @default.
- W2431115687 hasConcept C98045186 @default.
- W2431115687 hasConceptScore W2431115687C111919701 @default.
- W2431115687 hasConceptScore W2431115687C119857082 @default.
- W2431115687 hasConceptScore W2431115687C124101348 @default.
- W2431115687 hasConceptScore W2431115687C154945302 @default.
- W2431115687 hasConceptScore W2431115687C24590314 @default.
- W2431115687 hasConceptScore W2431115687C31258907 @default.
- W2431115687 hasConceptScore W2431115687C41008148 @default.
- W2431115687 hasConceptScore W2431115687C50644808 @default.
- W2431115687 hasConceptScore W2431115687C67186912 @default.
- W2431115687 hasConceptScore W2431115687C73555534 @default.
- W2431115687 hasConceptScore W2431115687C739882 @default.
- W2431115687 hasConceptScore W2431115687C75684735 @default.
- W2431115687 hasConceptScore W2431115687C77088390 @default.
- W2431115687 hasConceptScore W2431115687C89198739 @default.
- W2431115687 hasConceptScore W2431115687C98045186 @default.
- W2431115687 hasLocation W24311156871 @default.
- W2431115687 hasOpenAccess W2431115687 @default.
- W2431115687 hasPrimaryLocation W24311156871 @default.
- W2431115687 hasRelatedWork W1583949593 @default.
- W2431115687 hasRelatedWork W1972866788 @default.
- W2431115687 hasRelatedWork W2008316021 @default.
- W2431115687 hasRelatedWork W2060472984 @default.
- W2431115687 hasRelatedWork W2336391106 @default.
- W2431115687 hasRelatedWork W2406743792 @default.
- W2431115687 hasRelatedWork W2770458211 @default.
- W2431115687 hasRelatedWork W2887444169 @default.
- W2431115687 hasRelatedWork W3123856595 @default.
- W2431115687 hasRelatedWork W3183283580 @default.
- W2431115687 isParatext "false" @default.
- W2431115687 isRetracted "false" @default.
- W2431115687 magId "2431115687" @default.
- W2431115687 workType "article" @default.