Matches in SemOpenAlex for { <https://semopenalex.org/work/W2436218248> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2436218248 abstract "Pamminger and Fruwirth-Schnatter (2010) considered a Bayesian approach to model-based clustering of categorical time series assuming a fixed number of clusters. But the popular methods for selecting the number of clusters, for example, the Bayes Information Criterion (BIC), turned out to have severe problems in the categorical time series context. In this paper, we circumvent the difficulties of choosing the number of clusters by adopting the Bayesian semiparametric mixture model approach introduced by Bhattacharya (2008), who assume that the number of clusters is a random quantity, but is bounded above by a (possibly large) number of clusters. We adopt the perfect simulation approach of Mukhopadhyay and Bhattacharya (2012) for posterior simulation for completely solving the problems of convergence of the underlying Markov chain Monte Carlo (MCMC) approach. Importantly, within our main perfect simulation algorithm, there arose the necessity to simulate perfectly from the joint distribution of a set of continuous random variables with log-concave full conditional densities. We propose and develop a novel and efficient perfect simulation methodology for joint distributions with log-concave full conditionals. This perfect sampling methodology is of independent interest as well since in a very large and important class of Bayesian applications the full conditionals turn out to be log-concave. We will consider application of our model and methodology to the Austrian wage mobility data, also analysed by Pamminger and Fruwirth-Schnatter (2010), and adopting the methods developed in Mukhopadhyay et al. (2011), Mukhopadhyay et al. (2012), will obtain the posterior modes of clusterings and also the desired highest posterior distribution credible regions of the posterior distribution of clusterings." @default.
- W2436218248 created "2016-06-24" @default.
- W2436218248 creator A5021207606 @default.
- W2436218248 creator A5062910734 @default.
- W2436218248 date "2013-11-11" @default.
- W2436218248 modified "2023-09-23" @default.
- W2436218248 title "Clustering Categorical Time Series into Unknown Number of Clusters: A Perfect Simulation based Approach" @default.
- W2436218248 cites W1988197914 @default.
- W2436218248 cites W2017488093 @default.
- W2436218248 cites W2204383650 @default.
- W2436218248 cites W2336198725 @default.
- W2436218248 cites W2801914020 @default.
- W2436218248 cites W2962973891 @default.
- W2436218248 hasPublicationYear "2013" @default.
- W2436218248 type Work @default.
- W2436218248 sameAs 2436218248 @default.
- W2436218248 citedByCount "0" @default.
- W2436218248 crossrefType "posted-content" @default.
- W2436218248 hasAuthorship W2436218248A5021207606 @default.
- W2436218248 hasAuthorship W2436218248A5062910734 @default.
- W2436218248 hasConcept C105795698 @default.
- W2436218248 hasConcept C107673813 @default.
- W2436218248 hasConcept C111350023 @default.
- W2436218248 hasConcept C11413529 @default.
- W2436218248 hasConcept C126255220 @default.
- W2436218248 hasConcept C143724316 @default.
- W2436218248 hasConcept C151730666 @default.
- W2436218248 hasConcept C168136583 @default.
- W2436218248 hasConcept C18653775 @default.
- W2436218248 hasConcept C2779343474 @default.
- W2436218248 hasConcept C33923547 @default.
- W2436218248 hasConcept C41008148 @default.
- W2436218248 hasConcept C5274069 @default.
- W2436218248 hasConcept C73555534 @default.
- W2436218248 hasConcept C86803240 @default.
- W2436218248 hasConceptScore W2436218248C105795698 @default.
- W2436218248 hasConceptScore W2436218248C107673813 @default.
- W2436218248 hasConceptScore W2436218248C111350023 @default.
- W2436218248 hasConceptScore W2436218248C11413529 @default.
- W2436218248 hasConceptScore W2436218248C126255220 @default.
- W2436218248 hasConceptScore W2436218248C143724316 @default.
- W2436218248 hasConceptScore W2436218248C151730666 @default.
- W2436218248 hasConceptScore W2436218248C168136583 @default.
- W2436218248 hasConceptScore W2436218248C18653775 @default.
- W2436218248 hasConceptScore W2436218248C2779343474 @default.
- W2436218248 hasConceptScore W2436218248C33923547 @default.
- W2436218248 hasConceptScore W2436218248C41008148 @default.
- W2436218248 hasConceptScore W2436218248C5274069 @default.
- W2436218248 hasConceptScore W2436218248C73555534 @default.
- W2436218248 hasConceptScore W2436218248C86803240 @default.
- W2436218248 hasLocation W24362182481 @default.
- W2436218248 hasOpenAccess W2436218248 @default.
- W2436218248 hasPrimaryLocation W24362182481 @default.
- W2436218248 hasRelatedWork W1536565998 @default.
- W2436218248 hasRelatedWork W1564611113 @default.
- W2436218248 hasRelatedWork W1788616518 @default.
- W2436218248 hasRelatedWork W1939894768 @default.
- W2436218248 hasRelatedWork W1967042859 @default.
- W2436218248 hasRelatedWork W2078051489 @default.
- W2436218248 hasRelatedWork W2110469690 @default.
- W2436218248 hasRelatedWork W2191661390 @default.
- W2436218248 hasRelatedWork W2292466958 @default.
- W2436218248 hasRelatedWork W2512851972 @default.
- W2436218248 hasRelatedWork W2611220308 @default.
- W2436218248 hasRelatedWork W2614055028 @default.
- W2436218248 hasRelatedWork W2808573755 @default.
- W2436218248 hasRelatedWork W2922131440 @default.
- W2436218248 hasRelatedWork W2949206847 @default.
- W2436218248 hasRelatedWork W2978680884 @default.
- W2436218248 hasRelatedWork W3006249926 @default.
- W2436218248 hasRelatedWork W3036446794 @default.
- W2436218248 hasRelatedWork W3106259485 @default.
- W2436218248 hasRelatedWork W599376124 @default.
- W2436218248 isParatext "false" @default.
- W2436218248 isRetracted "false" @default.
- W2436218248 magId "2436218248" @default.
- W2436218248 workType "article" @default.