Matches in SemOpenAlex for { <https://semopenalex.org/work/W2437035415> ?p ?o ?g. }
- W2437035415 endingPage "903" @default.
- W2437035415 startingPage "903" @default.
- W2437035415 abstract "Mobile Mapping Technology (MMT) is one of the most important 3D spatial data acquisition technologies. The state-of-the-art mobile mapping systems, equipped with laser scanners and named Mobile LiDAR Scanning (MLS) systems, have been widely used in a variety of areas, especially in road mapping and road inventory. With the commercialization of Advanced Driving Assistance Systems (ADASs) and self-driving technology, there will be a great demand for lane-level detailed 3D maps, and MLS is the most promising technology to generate such lane-level detailed 3D maps. Road markings and road edges are necessary information in creating such lane-level detailed 3D maps. This paper proposes a scan line based method to extract road markings from mobile LiDAR point clouds in three steps: (1) preprocessing; (2) road points extraction; (3) road markings extraction and refinement. In preprocessing step, the isolated LiDAR points in the air are removed from the LiDAR point clouds and the point clouds are organized into scan lines. In the road points extraction step, seed road points are first extracted by Height Difference (HD) between trajectory data and road surface, then full road points are extracted from the point clouds by moving least squares line fitting. In the road markings extraction and refinement step, the intensity values of road points in a scan line are first smoothed by a dynamic window median filter to suppress intensity noises, then road markings are extracted by Edge Detection and Edge Constraint (EDEC) method, and the Fake Road Marking Points (FRMPs) are eliminated from the detected road markings by segment and dimensionality feature-based refinement. The performance of the proposed method is evaluated by three data samples and the experiment results indicate that road points are well extracted from MLS data and road markings are well extracted from road points by the applied method. A quantitative study shows that the proposed method achieves an average completeness, correctness, and F-measure of 0.96, 0.93, and 0.94, respectively. The time complexity analysis shows that the scan line based road markings extraction method proposed in this paper provides a promising alternative for offline road markings extraction from MLS data." @default.
- W2437035415 created "2016-06-24" @default.
- W2437035415 creator A5002396290 @default.
- W2437035415 creator A5032000220 @default.
- W2437035415 creator A5044602576 @default.
- W2437035415 creator A5047591289 @default.
- W2437035415 creator A5065746026 @default.
- W2437035415 creator A5086541310 @default.
- W2437035415 date "2016-06-17" @default.
- W2437035415 modified "2023-10-05" @default.
- W2437035415 title "Scan Line Based Road Marking Extraction from Mobile LiDAR Point Clouds" @default.
- W2437035415 cites W1239585782 @default.
- W2437035415 cites W1971304633 @default.
- W2437035415 cites W1984947070 @default.
- W2437035415 cites W1986522259 @default.
- W2437035415 cites W1987066676 @default.
- W2437035415 cites W1993022899 @default.
- W2437035415 cites W1998834014 @default.
- W2437035415 cites W2000035714 @default.
- W2437035415 cites W2008989490 @default.
- W2437035415 cites W2012876210 @default.
- W2437035415 cites W2016315247 @default.
- W2437035415 cites W2058155422 @default.
- W2437035415 cites W2058537106 @default.
- W2437035415 cites W2062520712 @default.
- W2437035415 cites W2073924329 @default.
- W2437035415 cites W2074893129 @default.
- W2437035415 cites W2077506631 @default.
- W2437035415 cites W2088648144 @default.
- W2437035415 cites W2101153839 @default.
- W2437035415 cites W2113551198 @default.
- W2437035415 cites W2124142674 @default.
- W2437035415 cites W2145395493 @default.
- W2437035415 cites W2159075475 @default.
- W2437035415 cites W2205574202 @default.
- W2437035415 cites W2283413936 @default.
- W2437035415 cites W2292658742 @default.
- W2437035415 cites W2312582804 @default.
- W2437035415 cites W2317618475 @default.
- W2437035415 cites W2578812804 @default.
- W2437035415 doi "https://doi.org/10.3390/s16060903" @default.
- W2437035415 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4934329" @default.
- W2437035415 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27322279" @default.
- W2437035415 hasPublicationYear "2016" @default.
- W2437035415 type Work @default.
- W2437035415 sameAs 2437035415 @default.
- W2437035415 citedByCount "61" @default.
- W2437035415 countsByYear W24370354152016 @default.
- W2437035415 countsByYear W24370354152017 @default.
- W2437035415 countsByYear W24370354152018 @default.
- W2437035415 countsByYear W24370354152019 @default.
- W2437035415 countsByYear W24370354152020 @default.
- W2437035415 countsByYear W24370354152021 @default.
- W2437035415 countsByYear W24370354152022 @default.
- W2437035415 countsByYear W24370354152023 @default.
- W2437035415 crossrefType "journal-article" @default.
- W2437035415 hasAuthorship W2437035415A5002396290 @default.
- W2437035415 hasAuthorship W2437035415A5032000220 @default.
- W2437035415 hasAuthorship W2437035415A5044602576 @default.
- W2437035415 hasAuthorship W2437035415A5047591289 @default.
- W2437035415 hasAuthorship W2437035415A5065746026 @default.
- W2437035415 hasAuthorship W2437035415A5086541310 @default.
- W2437035415 hasBestOaLocation W24370354151 @default.
- W2437035415 hasConcept C120665830 @default.
- W2437035415 hasConcept C121332964 @default.
- W2437035415 hasConcept C127413603 @default.
- W2437035415 hasConcept C131979681 @default.
- W2437035415 hasConcept C141349535 @default.
- W2437035415 hasConcept C147176958 @default.
- W2437035415 hasConcept C154945302 @default.
- W2437035415 hasConcept C162307627 @default.
- W2437035415 hasConcept C181672929 @default.
- W2437035415 hasConcept C198352243 @default.
- W2437035415 hasConcept C205649164 @default.
- W2437035415 hasConcept C2524010 @default.
- W2437035415 hasConcept C2776821279 @default.
- W2437035415 hasConcept C2780042925 @default.
- W2437035415 hasConcept C31972630 @default.
- W2437035415 hasConcept C33923547 @default.
- W2437035415 hasConcept C34736171 @default.
- W2437035415 hasConcept C41008148 @default.
- W2437035415 hasConcept C51399673 @default.
- W2437035415 hasConcept C520434653 @default.
- W2437035415 hasConcept C62649853 @default.
- W2437035415 hasConcept C87833898 @default.
- W2437035415 hasConceptScore W2437035415C120665830 @default.
- W2437035415 hasConceptScore W2437035415C121332964 @default.
- W2437035415 hasConceptScore W2437035415C127413603 @default.
- W2437035415 hasConceptScore W2437035415C131979681 @default.
- W2437035415 hasConceptScore W2437035415C141349535 @default.
- W2437035415 hasConceptScore W2437035415C147176958 @default.
- W2437035415 hasConceptScore W2437035415C154945302 @default.
- W2437035415 hasConceptScore W2437035415C162307627 @default.
- W2437035415 hasConceptScore W2437035415C181672929 @default.
- W2437035415 hasConceptScore W2437035415C198352243 @default.
- W2437035415 hasConceptScore W2437035415C205649164 @default.
- W2437035415 hasConceptScore W2437035415C2524010 @default.
- W2437035415 hasConceptScore W2437035415C2776821279 @default.