Matches in SemOpenAlex for { <https://semopenalex.org/work/W2438067319> ?p ?o ?g. }
- W2438067319 abstract "Excitatory aminoacids (EAAs) are stored in glutamatergic neurons and related into synaptic cleft, where they can activate inotropic or metabotropic receptors. Their action ends due to transport mechanisms performed by EAAT transporters (EAAT1/GLAST, EAAT2/GLT1, EAAT3/EAAC1, and EAAT4 or EAAT5). Glutamate neurotoxicity has been described in several neurodegenerative diseases such as Alzheimer’s disease (AD), Huntington’s disease (HD), Parkinson’s disease (PD) and amyotropic lateral sclerosis ALS). Some drugs, such as paclitaxel, are able to increase translation of microRNA and could be possible used as regulatory against glutamate neurotoxicity. Abbreviations: AD: Alzheimer’s disease; ALS: amyotrophic lateral sclerosis; AMPA: α-amino-3-hydroxy-5-methyl-isoxazole-4propionate; Asp: aspartate; CSF: cerebral spinal fluid; EAA: excitatory amino acid; EAAC1 (EAAT3): excitatory amino acid carrier; EAAT: excitatory amino acid transporter; GABA: gamma-aminobutyric acid; GDH: glutamate dehydrogenase; GLAST (EAAT1): glutamate – aspartate transporter; GLT1 (EAAT2): glutamate transporter; iGluR: ionotropic glutamate receptor; KA: kaninic acid; L-Glu: L-glutamate; mGluR: metabotropic glutamate receptor; miR: micro RNA; NMDA: N-methyl-D-aspartate; PD: Parkinson’s disease Introduction Some amino acids act as neurotransmitters in the nervous system, being glutamate and aspartate the common excitatory amino acids and GABA, glycine and taurine the inhibitory ones. Of these amino acids, glutamate and GABA are intimately associated, as their metabolism is associated through glutamic acid decarboxylase (E.C. 4.1.1.15.) (Figure 1). Furthermore, GABA and glutamic acid effects are antagonic and they are related with CO2 fixation (relevant to central ventilation). Glutamic acid metabolism is also related with NH3 detoxification (due to a reduction in α-ketoglutarate and glutamate contents and an increase in glutamine). The efflux of glutamate from brain across the hemato-encephalic barrier is much higher than the influx [1-3], meaning that metabolism of glutamate must play an important role in regulating the brain glutamate levels. Studies on metabolic generation of glutamate/glutamine by using radioactive substrates in brain shows that two pathways are involved. Glucose, glycerol, lactate, pyruvate, α-ketoglutarate and β-hydroxybutyrate seem to be metabolized to glutamate in neurons [4,5], as a low specific radioactivity of glutamine is obtained. In glial cells [6], where higher glutamine synthase is present [7,8], low radiolabelled glutamate and higher glutamine marked are obtained. This is the case of acetate, propionate, butyrate, citrate, leucine, GABA, aspartate and ammonia [9]. In order to decrease glutamic acid in synaptic cleft, excitatory amino acids transporters have an important effect. Therefore, in this paper we present some aspects of these proteins. Glutamatergic neurotransmission The excitatory amino acids (EAAs) are stored in synaptic vesicles in glutamatergic neurons and, upon an action potential, are released via exocytosis into the synaptic cleft where they can activate two different families of receptors: ionotropic (ligand-gated ion channels) and metabotropic (GTP-binding protein coupled) receptors. The ligandgated ion channels are further divided into three families: α-amino3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA), kainate (KA) and N–methyl-D-aspartate (NMDA). While AMPA and kainate receptors mediate rapid depolarizing responses at most synapses in the mammalian central nervous system [10], the NMDA receptor participates in synaptic plasticity and synapse formation [11]. The family of metabotropic receptors consists of at least eight subtypes and are involved in the modulation of synaptic signaling by EAAs and other neurotransmitters [12]. The termination of the EAA action takes place by an uptake mechanism that uses the Na+, K+ and pH gradients as a driving force to translocate the neurotransmitters against their concentration gradients, keeping their concentration below the level that activates their receptors (~1 μM) [13-15] (Figure 2). Excessive activation of EAA receptors contributes to brain injury through a process known as excitotoxicity. Therefore, this transport mechanism is not only important for ensuring accurate synaptic signaling but also for limiting the EAA-mediated excitotoxicity Excitatory amino acid (EAA) transporters Three broad subtypes of EAA transport activities have been Correspondence to: Josep J Centelles, Departament de Bioquimica i Biologia Molecular (Biologia), Facultat de Biologia, Universitat de Barcelona, Avda Diagonal, 643. Edifici Prevosti, planta-2, 08028, Barcelona, Spain, Tel: 934021870; E-mail: josepcentelles@ub.edu Received: January 16, 2016; Accepted: January 27, 2016; Published: January 30, 2016 Centelles JJ (2016) Glutamate transporters: the regulatory proteins for excitatory/excitotoxic glutamate in brain J Transl Sci, 2016 doi: 10.15761/JTS.1000123 Volume 2(1): 92-99 extracellular concentrations of EAAs by reducing the driving force required to transport an EAA into the cytoplasm. The second activity is a chloride-dependent transport which exchanges amino acids identified in brain preparations. One type, which is directly coupled to ATP hydrolysis, introduces glutamate into vesicles for release upon depolarization of the synaptic terminal [16]. It indirectly ensures low Glutamine ADP + Pi Glutamine synthetase (GS) (E.C. 6.3.1.2.) Glutaminase (Gase) (E.C. 3.5.1.2.) NH4 H2O Glutamate GABA Glutamate decarboxylase (GD) (E.C. 4.1.1.15.) Oxalacetate Glutamate dehydrogenase (GDH) (E.C. 1.4.1.2.) Glutamate oxalacetate transaminase (GOT) (E.C. 2.6.1.1.) NH4 + NADH Aspartate α-Ketoglutarate CO2 NH4 + ATP" @default.
- W2438067319 created "2016-06-24" @default.
- W2438067319 creator A5088356514 @default.
- W2438067319 date "2016-01-01" @default.
- W2438067319 modified "2023-09-24" @default.
- W2438067319 title "Glutamate transporters: the regulatory proteins for excitatory/excitotoxic glutamate in brain" @default.
- W2438067319 cites W132964130 @default.
- W2438067319 cites W1439525013 @default.
- W2438067319 cites W1491108164 @default.
- W2438067319 cites W1537256933 @default.
- W2438067319 cites W1607257685 @default.
- W2438067319 cites W16603568 @default.
- W2438067319 cites W1800253726 @default.
- W2438067319 cites W1838741822 @default.
- W2438067319 cites W1852185209 @default.
- W2438067319 cites W1900227502 @default.
- W2438067319 cites W1957958801 @default.
- W2438067319 cites W1960685535 @default.
- W2438067319 cites W1965902234 @default.
- W2438067319 cites W1967013325 @default.
- W2438067319 cites W1967072120 @default.
- W2438067319 cites W1969206710 @default.
- W2438067319 cites W1969400861 @default.
- W2438067319 cites W1976754780 @default.
- W2438067319 cites W1980829665 @default.
- W2438067319 cites W1983197885 @default.
- W2438067319 cites W1984089779 @default.
- W2438067319 cites W1987307039 @default.
- W2438067319 cites W1991701465 @default.
- W2438067319 cites W1995122601 @default.
- W2438067319 cites W2000273493 @default.
- W2438067319 cites W2003410399 @default.
- W2438067319 cites W2004345990 @default.
- W2438067319 cites W2005725623 @default.
- W2438067319 cites W2008189718 @default.
- W2438067319 cites W2016602177 @default.
- W2438067319 cites W2023349854 @default.
- W2438067319 cites W2027905503 @default.
- W2438067319 cites W2029690468 @default.
- W2438067319 cites W2030352252 @default.
- W2438067319 cites W2037701255 @default.
- W2438067319 cites W2047065428 @default.
- W2438067319 cites W2050330538 @default.
- W2438067319 cites W2053739364 @default.
- W2438067319 cites W2054683291 @default.
- W2438067319 cites W2074830850 @default.
- W2438067319 cites W2074833985 @default.
- W2438067319 cites W2077512773 @default.
- W2438067319 cites W2078310394 @default.
- W2438067319 cites W2079112263 @default.
- W2438067319 cites W2081413809 @default.
- W2438067319 cites W2083046441 @default.
- W2438067319 cites W2086032754 @default.
- W2438067319 cites W2089636816 @default.
- W2438067319 cites W2090415613 @default.
- W2438067319 cites W2091347056 @default.
- W2438067319 cites W2092034907 @default.
- W2438067319 cites W2092358916 @default.
- W2438067319 cites W2094673798 @default.
- W2438067319 cites W2106042714 @default.
- W2438067319 cites W2121179906 @default.
- W2438067319 cites W2121792692 @default.
- W2438067319 cites W2126199637 @default.
- W2438067319 cites W2128744963 @default.
- W2438067319 cites W2130190854 @default.
- W2438067319 cites W2135718342 @default.
- W2438067319 cites W2149497936 @default.
- W2438067319 cites W215178025 @default.
- W2438067319 cites W2157853053 @default.
- W2438067319 cites W2158554757 @default.
- W2438067319 cites W2160644313 @default.
- W2438067319 cites W2161972231 @default.
- W2438067319 cites W2168195159 @default.
- W2438067319 cites W2169099190 @default.
- W2438067319 cites W2183452160 @default.
- W2438067319 cites W2238263898 @default.
- W2438067319 cites W2409123041 @default.
- W2438067319 cites W2413356897 @default.
- W2438067319 cites W2414044959 @default.
- W2438067319 cites W2462861506 @default.
- W2438067319 cites W252901017 @default.
- W2438067319 cites W5139244 @default.
- W2438067319 doi "https://doi.org/10.15761/jts.1000123" @default.
- W2438067319 hasPublicationYear "2016" @default.
- W2438067319 type Work @default.
- W2438067319 sameAs 2438067319 @default.
- W2438067319 citedByCount "3" @default.
- W2438067319 countsByYear W24380673192020 @default.
- W2438067319 crossrefType "journal-article" @default.
- W2438067319 hasAuthorship W2438067319A5088356514 @default.
- W2438067319 hasBestOaLocation W24380673191 @default.
- W2438067319 hasConcept C119128870 @default.
- W2438067319 hasConcept C160268369 @default.
- W2438067319 hasConcept C169760540 @default.
- W2438067319 hasConcept C170493617 @default.
- W2438067319 hasConcept C185592680 @default.
- W2438067319 hasConcept C207951395 @default.
- W2438067319 hasConcept C2780648746 @default.
- W2438067319 hasConcept C41653306 @default.
- W2438067319 hasConcept C49051014 @default.