Matches in SemOpenAlex for { <https://semopenalex.org/work/W2439393670> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W2439393670 abstract "Grey Wolf Optimization (GWO) algorithm is a new meta-heuristic method, which is inspired by grey wolves, to mimic the hierarchy of leadership and grey wolves hunting mechanism in nature. This paper presents a hybrid model that employs grey wolf optimizer (GWO) along with support vector machines (SVMs) classification algorithm to improve the classification accuracy via selecting the optimal settings of SVMs parameters. The proposed approach consists of three phases; namely pre-processing, feature extraction, and GWO-SVMs classification phases. The proposed classification approach was implemented by applying resizing, remove background, and extracting color components for each image. Then, feature vector generation has been implemented via applying PCA feature extraction. Finally, GWO-SVMs model is developed for selecting the optimal SVMs parameters. The proposed approach has been implemented via applying One-againstOne multi-class SVMs system using 3-fold cross-validation. The datasets used for experiments were constructed based on real sample images of bell pepper at different stages, which were collected from farms in Minya city, Upper Egypt. Datasets of total 175 images were used for both training and testing datasets. Experimental results indicated that the proposed GWO-SVMs approach achieved better classification accuracy compared to the typical SVMs classification algorithm." @default.
- W2439393670 created "2016-06-24" @default.
- W2439393670 creator A5035836101 @default.
- W2439393670 creator A5069726973 @default.
- W2439393670 creator A5085432173 @default.
- W2439393670 creator A5087542455 @default.
- W2439393670 date "2015-11-01" @default.
- W2439393670 modified "2023-10-02" @default.
- W2439393670 title "Grey wolf optimization for one-against-one multi-class support vector machines" @default.
- W2439393670 cites W14070459 @default.
- W2439393670 cites W1975237987 @default.
- W2439393670 cites W2020355555 @default.
- W2439393670 cites W2061438946 @default.
- W2439393670 cites W2072600888 @default.
- W2439393670 cites W2096403497 @default.
- W2439393670 cites W2113535968 @default.
- W2439393670 cites W2146649024 @default.
- W2439393670 cites W2243691486 @default.
- W2439393670 cites W2550539074 @default.
- W2439393670 doi "https://doi.org/10.1109/socpar.2015.7492781" @default.
- W2439393670 hasPublicationYear "2015" @default.
- W2439393670 type Work @default.
- W2439393670 sameAs 2439393670 @default.
- W2439393670 citedByCount "17" @default.
- W2439393670 countsByYear W24393936702016 @default.
- W2439393670 countsByYear W24393936702017 @default.
- W2439393670 countsByYear W24393936702018 @default.
- W2439393670 countsByYear W24393936702019 @default.
- W2439393670 countsByYear W24393936702020 @default.
- W2439393670 countsByYear W24393936702021 @default.
- W2439393670 countsByYear W24393936702022 @default.
- W2439393670 countsByYear W24393936702023 @default.
- W2439393670 crossrefType "proceedings-article" @default.
- W2439393670 hasAuthorship W2439393670A5035836101 @default.
- W2439393670 hasAuthorship W2439393670A5069726973 @default.
- W2439393670 hasAuthorship W2439393670A5085432173 @default.
- W2439393670 hasAuthorship W2439393670A5087542455 @default.
- W2439393670 hasConcept C12267149 @default.
- W2439393670 hasConcept C154945302 @default.
- W2439393670 hasConcept C2777212361 @default.
- W2439393670 hasConcept C41008148 @default.
- W2439393670 hasConceptScore W2439393670C12267149 @default.
- W2439393670 hasConceptScore W2439393670C154945302 @default.
- W2439393670 hasConceptScore W2439393670C2777212361 @default.
- W2439393670 hasConceptScore W2439393670C41008148 @default.
- W2439393670 hasLocation W24393936701 @default.
- W2439393670 hasOpenAccess W2439393670 @default.
- W2439393670 hasPrimaryLocation W24393936701 @default.
- W2439393670 hasRelatedWork W169774068 @default.
- W2439393670 hasRelatedWork W1855281999 @default.
- W2439393670 hasRelatedWork W2101819884 @default.
- W2439393670 hasRelatedWork W2141705618 @default.
- W2439393670 hasRelatedWork W2153189372 @default.
- W2439393670 hasRelatedWork W2355927362 @default.
- W2439393670 hasRelatedWork W2937631562 @default.
- W2439393670 hasRelatedWork W3107474891 @default.
- W2439393670 hasRelatedWork W4285503465 @default.
- W2439393670 hasRelatedWork W59802363 @default.
- W2439393670 isParatext "false" @default.
- W2439393670 isRetracted "false" @default.
- W2439393670 magId "2439393670" @default.
- W2439393670 workType "article" @default.