Matches in SemOpenAlex for { <https://semopenalex.org/work/W2442657908> ?p ?o ?g. }
- W2442657908 endingPage "174" @default.
- W2442657908 startingPage "165" @default.
- W2442657908 abstract "Kernel principal component analysis (KPCA) is an effective and efficient technique for monitoring nonlinear processes. However, associating it with upper control limits (UCLs) based on the Gaussian distribution can deteriorate its performance. In this paper, the kernel density estimation (KDE) technique was used to estimate UCLs for KPCA-based nonlinear process monitoring. The monitoring performance of the resulting KPCA–KDE approach was then compared with KPCA, whose UCLs were based on the Gaussian distribution. Tests on the Tennessee Eastman process show that KPCA–KDE is more robust and provide better overall performance than KPCA with Gaussian assumption-based UCLs in both sensitivity and detection time. An efficient KPCA-KDE-based fault identification approach using complex step differentiation is also proposed." @default.
- W2442657908 created "2016-06-24" @default.
- W2442657908 creator A5063018198 @default.
- W2442657908 creator A5082385136 @default.
- W2442657908 date "2016-01-01" @default.
- W2442657908 modified "2023-10-04" @default.
- W2442657908 title "Nonlinear process fault detection and identification using kernel PCA and kernel density estimation" @default.
- W2442657908 cites W1969158915 @default.
- W2442657908 cites W1969551552 @default.
- W2442657908 cites W1984672166 @default.
- W2442657908 cites W1992382363 @default.
- W2442657908 cites W1994505190 @default.
- W2442657908 cites W2000647949 @default.
- W2442657908 cites W2004186751 @default.
- W2442657908 cites W2006614180 @default.
- W2442657908 cites W2012519640 @default.
- W2442657908 cites W2012914747 @default.
- W2442657908 cites W2014241185 @default.
- W2442657908 cites W2014507035 @default.
- W2442657908 cites W2040060706 @default.
- W2442657908 cites W2059392663 @default.
- W2442657908 cites W2061040753 @default.
- W2442657908 cites W2068193536 @default.
- W2442657908 cites W2068561554 @default.
- W2442657908 cites W2083822144 @default.
- W2442657908 cites W2084229232 @default.
- W2442657908 cites W2084320765 @default.
- W2442657908 cites W2089468765 @default.
- W2442657908 cites W2095518865 @default.
- W2442657908 cites W2098815387 @default.
- W2442657908 cites W2140095548 @default.
- W2442657908 cites W2154948243 @default.
- W2442657908 cites W2158958729 @default.
- W2442657908 cites W2170447682 @default.
- W2442657908 cites W2322097696 @default.
- W2442657908 cites W2493627968 @default.
- W2442657908 cites W2503993098 @default.
- W2442657908 cites W4249625715 @default.
- W2442657908 cites W562231173 @default.
- W2442657908 doi "https://doi.org/10.1080/21642583.2016.1198940" @default.
- W2442657908 hasPublicationYear "2016" @default.
- W2442657908 type Work @default.
- W2442657908 sameAs 2442657908 @default.
- W2442657908 citedByCount "54" @default.
- W2442657908 countsByYear W24426579082017 @default.
- W2442657908 countsByYear W24426579082018 @default.
- W2442657908 countsByYear W24426579082019 @default.
- W2442657908 countsByYear W24426579082020 @default.
- W2442657908 countsByYear W24426579082021 @default.
- W2442657908 countsByYear W24426579082022 @default.
- W2442657908 countsByYear W24426579082023 @default.
- W2442657908 crossrefType "journal-article" @default.
- W2442657908 hasAuthorship W2442657908A5063018198 @default.
- W2442657908 hasAuthorship W2442657908A5082385136 @default.
- W2442657908 hasBestOaLocation W24426579081 @default.
- W2442657908 hasConcept C105795698 @default.
- W2442657908 hasConcept C111919701 @default.
- W2442657908 hasConcept C114614502 @default.
- W2442657908 hasConcept C121332964 @default.
- W2442657908 hasConcept C122280245 @default.
- W2442657908 hasConcept C12267149 @default.
- W2442657908 hasConcept C152745839 @default.
- W2442657908 hasConcept C153180895 @default.
- W2442657908 hasConcept C154945302 @default.
- W2442657908 hasConcept C158622935 @default.
- W2442657908 hasConcept C163716315 @default.
- W2442657908 hasConcept C172707124 @default.
- W2442657908 hasConcept C182335926 @default.
- W2442657908 hasConcept C185429906 @default.
- W2442657908 hasConcept C195699287 @default.
- W2442657908 hasConcept C27438332 @default.
- W2442657908 hasConcept C33923547 @default.
- W2442657908 hasConcept C41008148 @default.
- W2442657908 hasConcept C62520636 @default.
- W2442657908 hasConcept C71134354 @default.
- W2442657908 hasConcept C74193536 @default.
- W2442657908 hasConcept C98045186 @default.
- W2442657908 hasConceptScore W2442657908C105795698 @default.
- W2442657908 hasConceptScore W2442657908C111919701 @default.
- W2442657908 hasConceptScore W2442657908C114614502 @default.
- W2442657908 hasConceptScore W2442657908C121332964 @default.
- W2442657908 hasConceptScore W2442657908C122280245 @default.
- W2442657908 hasConceptScore W2442657908C12267149 @default.
- W2442657908 hasConceptScore W2442657908C152745839 @default.
- W2442657908 hasConceptScore W2442657908C153180895 @default.
- W2442657908 hasConceptScore W2442657908C154945302 @default.
- W2442657908 hasConceptScore W2442657908C158622935 @default.
- W2442657908 hasConceptScore W2442657908C163716315 @default.
- W2442657908 hasConceptScore W2442657908C172707124 @default.
- W2442657908 hasConceptScore W2442657908C182335926 @default.
- W2442657908 hasConceptScore W2442657908C185429906 @default.
- W2442657908 hasConceptScore W2442657908C195699287 @default.
- W2442657908 hasConceptScore W2442657908C27438332 @default.
- W2442657908 hasConceptScore W2442657908C33923547 @default.
- W2442657908 hasConceptScore W2442657908C41008148 @default.
- W2442657908 hasConceptScore W2442657908C62520636 @default.
- W2442657908 hasConceptScore W2442657908C71134354 @default.
- W2442657908 hasConceptScore W2442657908C74193536 @default.