Matches in SemOpenAlex for { <https://semopenalex.org/work/W2443284789> ?p ?o ?g. }
- W2443284789 endingPage "2680" @default.
- W2443284789 startingPage "2665" @default.
- W2443284789 abstract "Multi-label classification deals with the problem where each example is associated with multiple class labels. Since the labels are often dependent to other labels, exploiting label dependencies can significantly improve the multi-label classification performance. The label dependency in existing studies is often given as prior knowledge or learned from the labels only. However, in many real applications, such prior knowledge may not be available, or labeled information might be very limited. In this paper, we propose a new algorithm, called M l -F orest , to learn an ensemble of hierarchical multi-label classifier trees to reveal the intrinsic label dependencies. In M l -F orest , we construct a set of hierarchical trees, and develop a label transfer mechanism to identify the multiple relevant labels in a hierarchical way. In general, the relevant labels at higher levels of the trees capture more discriminable label concepts, and they will be transferred into lower level children nodes that are harder to discriminate. The relevant labels in the hierarchy are then aggregated to compute label dependency and make the final prediction. Our empirical study shows encouraging results of the proposed algorithm in comparison with the state-of-the-art multi-label classification algorithms under Friedman test and post-hoc Nemenyi test." @default.
- W2443284789 created "2016-06-24" @default.
- W2443284789 creator A5010561682 @default.
- W2443284789 creator A5023130798 @default.
- W2443284789 creator A5032352025 @default.
- W2443284789 creator A5037497256 @default.
- W2443284789 creator A5087621349 @default.
- W2443284789 date "2016-10-01" @default.
- W2443284789 modified "2023-10-12" @default.
- W2443284789 title "ML-FOREST: A Multi-Label Tree Ensemble Method for Multi-Label Classification" @default.
- W2443284789 cites W130478469 @default.
- W2443284789 cites W1558901573 @default.
- W2443284789 cites W1753402186 @default.
- W2443284789 cites W1834987204 @default.
- W2443284789 cites W1944469062 @default.
- W2443284789 cites W1964584498 @default.
- W2443284789 cites W1967542092 @default.
- W2443284789 cites W1979974203 @default.
- W2443284789 cites W1980061733 @default.
- W2443284789 cites W1998064689 @default.
- W2443284789 cites W1999954155 @default.
- W2443284789 cites W2005330159 @default.
- W2443284789 cites W2009985472 @default.
- W2443284789 cites W2027266161 @default.
- W2443284789 cites W2046380547 @default.
- W2443284789 cites W2052684427 @default.
- W2443284789 cites W2066340877 @default.
- W2443284789 cites W2074909580 @default.
- W2443284789 cites W2091961126 @default.
- W2443284789 cites W2094651715 @default.
- W2443284789 cites W2099330554 @default.
- W2443284789 cites W2115629999 @default.
- W2443284789 cites W2128207034 @default.
- W2443284789 cites W2129026672 @default.
- W2443284789 cites W2143854982 @default.
- W2443284789 cites W2145827727 @default.
- W2443284789 cites W2146241755 @default.
- W2443284789 cites W2148484209 @default.
- W2443284789 cites W2153635508 @default.
- W2443284789 cites W2154477800 @default.
- W2443284789 cites W2156935079 @default.
- W2443284789 cites W2161621183 @default.
- W2443284789 cites W2172000360 @default.
- W2443284789 cites W2711266013 @default.
- W2443284789 cites W2951829787 @default.
- W2443284789 cites W3015464002 @default.
- W2443284789 cites W4212883601 @default.
- W2443284789 cites W4232478844 @default.
- W2443284789 doi "https://doi.org/10.1109/tkde.2016.2581161" @default.
- W2443284789 hasPublicationYear "2016" @default.
- W2443284789 type Work @default.
- W2443284789 sameAs 2443284789 @default.
- W2443284789 citedByCount "70" @default.
- W2443284789 countsByYear W24432847892017 @default.
- W2443284789 countsByYear W24432847892018 @default.
- W2443284789 countsByYear W24432847892019 @default.
- W2443284789 countsByYear W24432847892020 @default.
- W2443284789 countsByYear W24432847892021 @default.
- W2443284789 countsByYear W24432847892022 @default.
- W2443284789 countsByYear W24432847892023 @default.
- W2443284789 crossrefType "journal-article" @default.
- W2443284789 hasAuthorship W2443284789A5010561682 @default.
- W2443284789 hasAuthorship W2443284789A5023130798 @default.
- W2443284789 hasAuthorship W2443284789A5032352025 @default.
- W2443284789 hasAuthorship W2443284789A5037497256 @default.
- W2443284789 hasAuthorship W2443284789A5087621349 @default.
- W2443284789 hasConcept C113174947 @default.
- W2443284789 hasConcept C119857082 @default.
- W2443284789 hasConcept C124101348 @default.
- W2443284789 hasConcept C134306372 @default.
- W2443284789 hasConcept C153180895 @default.
- W2443284789 hasConcept C154945302 @default.
- W2443284789 hasConcept C2776482837 @default.
- W2443284789 hasConcept C33923547 @default.
- W2443284789 hasConcept C41008148 @default.
- W2443284789 hasConceptScore W2443284789C113174947 @default.
- W2443284789 hasConceptScore W2443284789C119857082 @default.
- W2443284789 hasConceptScore W2443284789C124101348 @default.
- W2443284789 hasConceptScore W2443284789C134306372 @default.
- W2443284789 hasConceptScore W2443284789C153180895 @default.
- W2443284789 hasConceptScore W2443284789C154945302 @default.
- W2443284789 hasConceptScore W2443284789C2776482837 @default.
- W2443284789 hasConceptScore W2443284789C33923547 @default.
- W2443284789 hasConceptScore W2443284789C41008148 @default.
- W2443284789 hasFunder F4320306709 @default.
- W2443284789 hasFunder F4320306900 @default.
- W2443284789 hasFunder F4320320955 @default.
- W2443284789 hasFunder F4320321001 @default.
- W2443284789 hasFunder F4320321921 @default.
- W2443284789 hasFunder F4320335787 @default.
- W2443284789 hasIssue "10" @default.
- W2443284789 hasLocation W24432847891 @default.
- W2443284789 hasOpenAccess W2443284789 @default.
- W2443284789 hasPrimaryLocation W24432847891 @default.
- W2443284789 hasRelatedWork W1914651075 @default.
- W2443284789 hasRelatedWork W2358841807 @default.
- W2443284789 hasRelatedWork W2912288872 @default.
- W2443284789 hasRelatedWork W2961085424 @default.