Matches in SemOpenAlex for { <https://semopenalex.org/work/W2443624995> ?p ?o ?g. }
- W2443624995 endingPage "1154" @default.
- W2443624995 startingPage "1141" @default.
- W2443624995 abstract "Digital images play an essential role in analysis tasks that can be applied in various knowledge domains, including medicine, meteorology, geology, and biology. Such images can be degraded by noise during the process of acquisition, transmission, storage, or compression. The use of local filters in image restoration may generate artifacts when these filters are not well adapted to the image content as a result of the heuristic optimization of local filters. Denoising methods based on learning procedure are more capable than parametric filters for addressing the conflicts between noise suppression and artifact reduction. In this study, we present a nonlinear filtering method based on a two-step switching scheme to remove both salt-and-pepper and additive white Gaussian noises. In the switching scheme, two cascaded detectors are used to detect noise, and two corresponding estimators are employed to effectively and efficiently filter the noise in an image. In the process of training, a method according to patch clustering is utilized, and genetic programming (GP) is subsequently applied to determine the optimum filter (wavelet-domain filter) for each individual cluster, while in testing part, the optimum filter trained beforehand by GP is recovered and used on the inputted corrupted patch. This adaptive structure is employed to cope with several noise types. Experimental and comparative analysis results show that the denoising performance of the proposed method is superior to that of existing denoising methods as per both quantitative and qualitative assessments." @default.
- W2443624995 created "2016-06-24" @default.
- W2443624995 creator A5032597191 @default.
- W2443624995 creator A5034507991 @default.
- W2443624995 creator A5047260709 @default.
- W2443624995 creator A5048232944 @default.
- W2443624995 creator A5049960313 @default.
- W2443624995 date "2016-06-06" @default.
- W2443624995 modified "2023-09-29" @default.
- W2443624995 title "Denoising of natural images through robust wavelet thresholding and genetic programming" @default.
- W2443624995 cites W1483615533 @default.
- W2443624995 cites W1707550560 @default.
- W2443624995 cites W2012864248 @default.
- W2443624995 cites W2023199938 @default.
- W2443624995 cites W2026968593 @default.
- W2443624995 cites W2037642501 @default.
- W2443624995 cites W2038232617 @default.
- W2443624995 cites W2056370875 @default.
- W2443624995 cites W2057463591 @default.
- W2443624995 cites W2069441534 @default.
- W2443624995 cites W2081951106 @default.
- W2443624995 cites W2087287485 @default.
- W2443624995 cites W2099046646 @default.
- W2443624995 cites W2100925004 @default.
- W2443624995 cites W2106475273 @default.
- W2443624995 cites W2113862745 @default.
- W2443624995 cites W2113945798 @default.
- W2443624995 cites W2115770731 @default.
- W2443624995 cites W2119612780 @default.
- W2443624995 cites W2119634769 @default.
- W2443624995 cites W2122214262 @default.
- W2443624995 cites W2122374500 @default.
- W2443624995 cites W2127078478 @default.
- W2443624995 cites W2127235472 @default.
- W2443624995 cites W2130604180 @default.
- W2443624995 cites W2133665775 @default.
- W2443624995 cites W2140970787 @default.
- W2443624995 cites W2147317467 @default.
- W2443624995 cites W2148358298 @default.
- W2443624995 cites W2150134853 @default.
- W2443624995 cites W2153663612 @default.
- W2443624995 cites W2154011501 @default.
- W2443624995 cites W2156668482 @default.
- W2443624995 cites W2161844191 @default.
- W2443624995 cites W2162618331 @default.
- W2443624995 cites W2164955529 @default.
- W2443624995 cites W2165141499 @default.
- W2443624995 cites W2169733476 @default.
- W2443624995 cites W3104720471 @default.
- W2443624995 cites W4244280039 @default.
- W2443624995 cites W637287392 @default.
- W2443624995 doi "https://doi.org/10.1007/s00371-016-1273-5" @default.
- W2443624995 hasPublicationYear "2016" @default.
- W2443624995 type Work @default.
- W2443624995 sameAs 2443624995 @default.
- W2443624995 citedByCount "18" @default.
- W2443624995 countsByYear W24436249952017 @default.
- W2443624995 countsByYear W24436249952018 @default.
- W2443624995 countsByYear W24436249952019 @default.
- W2443624995 countsByYear W24436249952021 @default.
- W2443624995 countsByYear W24436249952022 @default.
- W2443624995 countsByYear W24436249952023 @default.
- W2443624995 crossrefType "journal-article" @default.
- W2443624995 hasAuthorship W2443624995A5032597191 @default.
- W2443624995 hasAuthorship W2443624995A5034507991 @default.
- W2443624995 hasAuthorship W2443624995A5047260709 @default.
- W2443624995 hasAuthorship W2443624995A5048232944 @default.
- W2443624995 hasAuthorship W2443624995A5049960313 @default.
- W2443624995 hasBestOaLocation W24436249952 @default.
- W2443624995 hasConcept C110332635 @default.
- W2443624995 hasConcept C115961682 @default.
- W2443624995 hasConcept C153180895 @default.
- W2443624995 hasConcept C154945302 @default.
- W2443624995 hasConcept C163294075 @default.
- W2443624995 hasConcept C166957645 @default.
- W2443624995 hasConcept C191178318 @default.
- W2443624995 hasConcept C205649164 @default.
- W2443624995 hasConcept C2776608160 @default.
- W2443624995 hasConcept C2983327147 @default.
- W2443624995 hasConcept C31972630 @default.
- W2443624995 hasConcept C41008148 @default.
- W2443624995 hasConcept C47432892 @default.
- W2443624995 hasConcept C77660652 @default.
- W2443624995 hasConceptScore W2443624995C110332635 @default.
- W2443624995 hasConceptScore W2443624995C115961682 @default.
- W2443624995 hasConceptScore W2443624995C153180895 @default.
- W2443624995 hasConceptScore W2443624995C154945302 @default.
- W2443624995 hasConceptScore W2443624995C163294075 @default.
- W2443624995 hasConceptScore W2443624995C166957645 @default.
- W2443624995 hasConceptScore W2443624995C191178318 @default.
- W2443624995 hasConceptScore W2443624995C205649164 @default.
- W2443624995 hasConceptScore W2443624995C2776608160 @default.
- W2443624995 hasConceptScore W2443624995C2983327147 @default.
- W2443624995 hasConceptScore W2443624995C31972630 @default.
- W2443624995 hasConceptScore W2443624995C41008148 @default.
- W2443624995 hasConceptScore W2443624995C47432892 @default.
- W2443624995 hasConceptScore W2443624995C77660652 @default.
- W2443624995 hasIssue "9" @default.