Matches in SemOpenAlex for { <https://semopenalex.org/work/W245109230> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W245109230 abstract "The spatial features within a region influence many processes in human activity. Mountains, lakes, oceans, rivers, freeways, population densities, housing densities, and road networks are examples of geographical factors that impact spatial behaviors. Separated into two parts, the work presented here incorporates this information into both density estimation methods and models of street gang rivalries and territories.Part I discusses methods for producing a probability density estimate given a set of discrete event data. Common methods of density estimation, such as Kernel Density Estimation, do not incorporate geographical information. Using these methods could result in non-negligible portions of the support of the density in unrealistic geographic locations. For example, crime density estimation models that do not take geographic information into account may predict events in unlikely places such as oceans, mountains, etc. To obtain more geographically accurate density estimates, a set of Maximum Penalized Likelihood Estimation methods based on Total Variation norm and H1 Sobolev semi-norm regularizers in conjunction with a priori high resolution spatial data is proposed. These methods are applied to a residential burglary data set of the San Fernando Valley using geographic features obtained from satellite images of the region and housing density information.Part II addresses the behaviors and rivalries of street gangs and how the spatial characteristics of the region affect the dynamics of the system. Gangs typically claim a specific territory as their own, and they tend to have a set space, a location they use as a center for their activities within the territory. The spatial distribution of gangs influences the rivalries that develop within the area. One stochastic model and one deterministic model are proposed, providing different types of outputs. Both models incorporate important geographical features from the region that would inhibit movement, such as rivers and large highways. In the stochastic method, an agent-based model simulates the creation of street gang rivalries. The movement dynamics of agents are coupled to an evolving network of gang rivalries, which is determined by previous interactions among agents in the system. Basic gang data, geographic information, and behavioral dynamics suggested by the criminology literature are integrated into the model. The deterministic method, derived from a stochastic approach, modifies a system of partial differential equations from a model for coyotes. Territorial animals and street gangs often exhibit similar behavioral characteristics. Both groups have a home base and mark their territories to distinguish claimed regions. To analyze the two methods, the Hollenbeck policing division of the Los Angeles Police Department is used as a case study." @default.
- W245109230 created "2016-06-24" @default.
- W245109230 creator A5031066739 @default.
- W245109230 date "2012-01-01" @default.
- W245109230 modified "2023-09-26" @default.
- W245109230 title "Incorporating Spatial Information into Density Estimates and Street Gang Models" @default.
- W245109230 hasPublicationYear "2012" @default.
- W245109230 type Work @default.
- W245109230 sameAs 245109230 @default.
- W245109230 citedByCount "0" @default.
- W245109230 crossrefType "journal-article" @default.
- W245109230 hasAuthorship W245109230A5031066739 @default.
- W245109230 hasConcept C105795698 @default.
- W245109230 hasConcept C111472728 @default.
- W245109230 hasConcept C138885662 @default.
- W245109230 hasConcept C144024400 @default.
- W245109230 hasConcept C149923435 @default.
- W245109230 hasConcept C159620131 @default.
- W245109230 hasConcept C162324750 @default.
- W245109230 hasConcept C177264268 @default.
- W245109230 hasConcept C185429906 @default.
- W245109230 hasConcept C187736073 @default.
- W245109230 hasConcept C189508267 @default.
- W245109230 hasConcept C199360897 @default.
- W245109230 hasConcept C205649164 @default.
- W245109230 hasConcept C2908647359 @default.
- W245109230 hasConcept C33923547 @default.
- W245109230 hasConcept C41008148 @default.
- W245109230 hasConcept C41856607 @default.
- W245109230 hasConcept C58640448 @default.
- W245109230 hasConcept C62649853 @default.
- W245109230 hasConcept C71134354 @default.
- W245109230 hasConcept C75553542 @default.
- W245109230 hasConcept C96250715 @default.
- W245109230 hasConceptScore W245109230C105795698 @default.
- W245109230 hasConceptScore W245109230C111472728 @default.
- W245109230 hasConceptScore W245109230C138885662 @default.
- W245109230 hasConceptScore W245109230C144024400 @default.
- W245109230 hasConceptScore W245109230C149923435 @default.
- W245109230 hasConceptScore W245109230C159620131 @default.
- W245109230 hasConceptScore W245109230C162324750 @default.
- W245109230 hasConceptScore W245109230C177264268 @default.
- W245109230 hasConceptScore W245109230C185429906 @default.
- W245109230 hasConceptScore W245109230C187736073 @default.
- W245109230 hasConceptScore W245109230C189508267 @default.
- W245109230 hasConceptScore W245109230C199360897 @default.
- W245109230 hasConceptScore W245109230C205649164 @default.
- W245109230 hasConceptScore W245109230C2908647359 @default.
- W245109230 hasConceptScore W245109230C33923547 @default.
- W245109230 hasConceptScore W245109230C41008148 @default.
- W245109230 hasConceptScore W245109230C41856607 @default.
- W245109230 hasConceptScore W245109230C58640448 @default.
- W245109230 hasConceptScore W245109230C62649853 @default.
- W245109230 hasConceptScore W245109230C71134354 @default.
- W245109230 hasConceptScore W245109230C75553542 @default.
- W245109230 hasConceptScore W245109230C96250715 @default.
- W245109230 hasLocation W2451092301 @default.
- W245109230 hasOpenAccess W245109230 @default.
- W245109230 hasPrimaryLocation W2451092301 @default.
- W245109230 hasRelatedWork W125537035 @default.
- W245109230 hasRelatedWork W1565536405 @default.
- W245109230 hasRelatedWork W1572308294 @default.
- W245109230 hasRelatedWork W1965109302 @default.
- W245109230 hasRelatedWork W1986562158 @default.
- W245109230 hasRelatedWork W1989996068 @default.
- W245109230 hasRelatedWork W2036180859 @default.
- W245109230 hasRelatedWork W2144142371 @default.
- W245109230 hasRelatedWork W2150199049 @default.
- W245109230 hasRelatedWork W2186024379 @default.
- W245109230 hasRelatedWork W2320415642 @default.
- W245109230 hasRelatedWork W2327549454 @default.
- W245109230 hasRelatedWork W2337173252 @default.
- W245109230 hasRelatedWork W2346122931 @default.
- W245109230 hasRelatedWork W2741063492 @default.
- W245109230 hasRelatedWork W2990139860 @default.
- W245109230 hasRelatedWork W2999077428 @default.
- W245109230 hasRelatedWork W3124033886 @default.
- W245109230 hasRelatedWork W3205741536 @default.
- W245109230 hasRelatedWork W2120801166 @default.
- W245109230 isParatext "false" @default.
- W245109230 isRetracted "false" @default.
- W245109230 magId "245109230" @default.
- W245109230 workType "article" @default.