Matches in SemOpenAlex for { <https://semopenalex.org/work/W2460358819> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2460358819 abstract "As a branch of statistics, cluster analysis has been extensively studied and widely used in many applications. Cluster analysis has recently become a highly active topic in data mining research. As a data mining function, cluster analysis can be used as a standalone tool to gain insight into the distribution of data, to observe the characteristics of each cluster. Alternatively, it may serve as a preprocessing step for other algorithms. In fact, clustering is known as unsupervised learning because the class label information is not presented. For this reason, clustering is a form of learning by observation, rather than learning by examples. It means that we always do not know whether the clustering partition is good. In general, the clustering partition need to be evaluated within quality and effectiveness. In this paper, a new evaluation algorithm is proposed which based on information entropy, to evaluate the quality of clustering. In order to improve the evaluation results, it takes full advantage of the marked data and other information, and constrains the number of clusters to enhance the credibility of the process. The membership degree is defined according to the distance of tuples. This method broadens the original information entropy method application on non-convex data set, while the convex data set has a good application. It is validated by taking an experiment on data set R15 and data set Jain, demonstrating the effectiveness of the different types of data sets. For evaluating the quality of clustering, a new evaluation algorithm based on information entropy is proposed. This method broadens the original information entropy method application on non-convex data set, while the convex data set has a good application. In order to improve the evaluation results, it takes full advantage of the marked data and other information, and constrains the number of clusters to enhance the credibility of the process. It is validated by taking an experiment on data set R15 and data set Jain, demonstrating the effectiveness of the different types of data sets." @default.
- W2460358819 created "2016-07-22" @default.
- W2460358819 creator A5043995466 @default.
- W2460358819 creator A5078187421 @default.
- W2460358819 creator A5080249769 @default.
- W2460358819 creator A5080570693 @default.
- W2460358819 date "2016-03-01" @default.
- W2460358819 modified "2023-09-26" @default.
- W2460358819 title "Evaluation algorithm for clustering quality based on information entropy" @default.
- W2460358819 cites W1533316009 @default.
- W2460358819 cites W1888898201 @default.
- W2460358819 cites W1964346230 @default.
- W2460358819 cites W1972098431 @default.
- W2460358819 cites W1998259955 @default.
- W2460358819 cites W2038282919 @default.
- W2460358819 cites W2138081784 @default.
- W2460358819 cites W3160701863 @default.
- W2460358819 cites W4234315553 @default.
- W2460358819 cites W4380227172 @default.
- W2460358819 doi "https://doi.org/10.1109/icbda.2016.7509791" @default.
- W2460358819 hasPublicationYear "2016" @default.
- W2460358819 type Work @default.
- W2460358819 sameAs 2460358819 @default.
- W2460358819 citedByCount "1" @default.
- W2460358819 countsByYear W24603588192023 @default.
- W2460358819 crossrefType "proceedings-article" @default.
- W2460358819 hasAuthorship W2460358819A5043995466 @default.
- W2460358819 hasAuthorship W2460358819A5078187421 @default.
- W2460358819 hasAuthorship W2460358819A5080249769 @default.
- W2460358819 hasAuthorship W2460358819A5080570693 @default.
- W2460358819 hasConcept C104047586 @default.
- W2460358819 hasConcept C106301342 @default.
- W2460358819 hasConcept C11413529 @default.
- W2460358819 hasConcept C121332964 @default.
- W2460358819 hasConcept C124101348 @default.
- W2460358819 hasConcept C149872217 @default.
- W2460358819 hasConcept C154945302 @default.
- W2460358819 hasConcept C17212007 @default.
- W2460358819 hasConcept C186767784 @default.
- W2460358819 hasConcept C193143536 @default.
- W2460358819 hasConcept C27964816 @default.
- W2460358819 hasConcept C33704608 @default.
- W2460358819 hasConcept C41008148 @default.
- W2460358819 hasConcept C62520636 @default.
- W2460358819 hasConcept C73555534 @default.
- W2460358819 hasConcept C94641424 @default.
- W2460358819 hasConceptScore W2460358819C104047586 @default.
- W2460358819 hasConceptScore W2460358819C106301342 @default.
- W2460358819 hasConceptScore W2460358819C11413529 @default.
- W2460358819 hasConceptScore W2460358819C121332964 @default.
- W2460358819 hasConceptScore W2460358819C124101348 @default.
- W2460358819 hasConceptScore W2460358819C149872217 @default.
- W2460358819 hasConceptScore W2460358819C154945302 @default.
- W2460358819 hasConceptScore W2460358819C17212007 @default.
- W2460358819 hasConceptScore W2460358819C186767784 @default.
- W2460358819 hasConceptScore W2460358819C193143536 @default.
- W2460358819 hasConceptScore W2460358819C27964816 @default.
- W2460358819 hasConceptScore W2460358819C33704608 @default.
- W2460358819 hasConceptScore W2460358819C41008148 @default.
- W2460358819 hasConceptScore W2460358819C62520636 @default.
- W2460358819 hasConceptScore W2460358819C73555534 @default.
- W2460358819 hasConceptScore W2460358819C94641424 @default.
- W2460358819 hasLocation W24603588191 @default.
- W2460358819 hasOpenAccess W2460358819 @default.
- W2460358819 hasPrimaryLocation W24603588191 @default.
- W2460358819 hasRelatedWork W10437313 @default.
- W2460358819 hasRelatedWork W2025362236 @default.
- W2460358819 hasRelatedWork W2163563073 @default.
- W2460358819 hasRelatedWork W2239559253 @default.
- W2460358819 hasRelatedWork W2398543122 @default.
- W2460358819 hasRelatedWork W2626264717 @default.
- W2460358819 hasRelatedWork W2770741777 @default.
- W2460358819 hasRelatedWork W2970954390 @default.
- W2460358819 hasRelatedWork W4233099250 @default.
- W2460358819 hasRelatedWork W1491908038 @default.
- W2460358819 isParatext "false" @default.
- W2460358819 isRetracted "false" @default.
- W2460358819 magId "2460358819" @default.
- W2460358819 workType "article" @default.