Matches in SemOpenAlex for { <https://semopenalex.org/work/W2460403819> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2460403819 abstract "Feature selection has recently been the subject of intensive research in data mining, especially for datasets with a large number of descriptive attributes such as QSAR (Quantitative Activity Structure Relationship) data. QSAR is an in-silico drug design methodology, which requires identifying important features of molecules that explain a drug relevant activity of interest. A typical QSAR dataset for predicting an activity of interest is characterized by a large number of descriptive features (300–1000) for a relatively small number of compounds (typically around 50–500). Finding the best feature subset for a given problem with N number of features requires evaluating all 2N possible subsets. The best feature subset also depends on the predictive modeling, which will be employed to predict the future unknown values of response variables of interest. Feature selection involves minimizing the number of relevant features for maximizing the predictive power of the model. From this point of view feature selection can be viewed as a special type of multi-objective optimization problem. Evolutionary computing can be applied to problems where traditional methods are hard to apply or lead to unsatisfactory solutions (e.g. local optima). The methods of evolutionary computation are stochastic and their search methods imitate and model some phenomena from nature and evolution: (i) the survival of the fittest and (ii) genetic inheritance. This dissertation addresses evolutionary algorithms for feature selection and predictive modeling for QSAR data sets." @default.
- W2460403819 created "2016-07-22" @default.
- W2460403819 creator A5000204633 @default.
- W2460403819 creator A5066887922 @default.
- W2460403819 creator A5084368552 @default.
- W2460403819 date "2002-01-01" @default.
- W2460403819 modified "2023-09-28" @default.
- W2460403819 title "Evolutionary computing for feature selection and predictive data mining" @default.
- W2460403819 hasPublicationYear "2002" @default.
- W2460403819 type Work @default.
- W2460403819 sameAs 2460403819 @default.
- W2460403819 citedByCount "3" @default.
- W2460403819 countsByYear W24604038192013 @default.
- W2460403819 countsByYear W24604038192019 @default.
- W2460403819 crossrefType "journal-article" @default.
- W2460403819 hasAuthorship W2460403819A5000204633 @default.
- W2460403819 hasAuthorship W2460403819A5066887922 @default.
- W2460403819 hasAuthorship W2460403819A5084368552 @default.
- W2460403819 hasConcept C105902424 @default.
- W2460403819 hasConcept C119857082 @default.
- W2460403819 hasConcept C124101348 @default.
- W2460403819 hasConcept C138885662 @default.
- W2460403819 hasConcept C148483581 @default.
- W2460403819 hasConcept C154945302 @default.
- W2460403819 hasConcept C159149176 @default.
- W2460403819 hasConcept C164126121 @default.
- W2460403819 hasConcept C2776401178 @default.
- W2460403819 hasConcept C41008148 @default.
- W2460403819 hasConcept C41895202 @default.
- W2460403819 hasConcept C81917197 @default.
- W2460403819 hasConcept C8880873 @default.
- W2460403819 hasConceptScore W2460403819C105902424 @default.
- W2460403819 hasConceptScore W2460403819C119857082 @default.
- W2460403819 hasConceptScore W2460403819C124101348 @default.
- W2460403819 hasConceptScore W2460403819C138885662 @default.
- W2460403819 hasConceptScore W2460403819C148483581 @default.
- W2460403819 hasConceptScore W2460403819C154945302 @default.
- W2460403819 hasConceptScore W2460403819C159149176 @default.
- W2460403819 hasConceptScore W2460403819C164126121 @default.
- W2460403819 hasConceptScore W2460403819C2776401178 @default.
- W2460403819 hasConceptScore W2460403819C41008148 @default.
- W2460403819 hasConceptScore W2460403819C41895202 @default.
- W2460403819 hasConceptScore W2460403819C81917197 @default.
- W2460403819 hasConceptScore W2460403819C8880873 @default.
- W2460403819 hasLocation W24604038191 @default.
- W2460403819 hasOpenAccess W2460403819 @default.
- W2460403819 hasPrimaryLocation W24604038191 @default.
- W2460403819 hasRelatedWork W160014060 @default.
- W2460403819 hasRelatedWork W2050226080 @default.
- W2460403819 hasRelatedWork W2084842202 @default.
- W2460403819 hasRelatedWork W2089133220 @default.
- W2460403819 hasRelatedWork W2089939419 @default.
- W2460403819 hasRelatedWork W2135547590 @default.
- W2460403819 hasRelatedWork W2333655695 @default.
- W2460403819 hasRelatedWork W2413361986 @default.
- W2460403819 hasRelatedWork W2494147547 @default.
- W2460403819 hasRelatedWork W2499829257 @default.
- W2460403819 hasRelatedWork W2583602225 @default.
- W2460403819 hasRelatedWork W2734114384 @default.
- W2460403819 hasRelatedWork W2905041206 @default.
- W2460403819 hasRelatedWork W2939262322 @default.
- W2460403819 hasRelatedWork W3004863178 @default.
- W2460403819 hasRelatedWork W3088028368 @default.
- W2460403819 hasRelatedWork W3119602592 @default.
- W2460403819 hasRelatedWork W3134254543 @default.
- W2460403819 hasRelatedWork W3198778886 @default.
- W2460403819 hasRelatedWork W3201010908 @default.
- W2460403819 isParatext "false" @default.
- W2460403819 isRetracted "false" @default.
- W2460403819 magId "2460403819" @default.
- W2460403819 workType "article" @default.